

# GUIDE Inverter HF650 Series Technical Manual

Version: 1.00

Ensure the end user receives this manual and keep it properly.

Wuhan Guide Electric Drive Technology Co., Ltd.



# Foreword

Thank you for your choice on GUIDE inverter! You will enjoy our comprehensive and sincere service.

The vector controlled GUIDE HF650 Series inverter, have been developed to satisfy the high reliability and high inverter performance demands in crane industry, with its sensorless vector control performance indexs reaching the world's leading level.

In order to guarantee the inverter's excellent performance and safety of the user and equipment, read carefully this manual before attempting to start the equipment.

This manual is attached with the product as an accessory; keep it well for future inspection and maintenance.

Do not hesitate to contact our local offices and agencies in case of any doubt or special requests, and it is also available to contact directly our aftersales department service center in Wuhan headquarter, we will offer our service sincerely.

Contents of this manual are subject to change without notice.

Wuhan Guide Electric Drive Technology Co., Ltd.

| 1 Safety instructions                                      |
|------------------------------------------------------------|
| 1.1 Symbols 1                                              |
| 1.2 Application scope 2                                    |
| 1.3 Notice on scrapping                                    |
| 2. Product overview 3                                      |
| 2.1 Unpacking check                                        |
| 2.2 Product model and nameplate                            |
| 2.3 Product series models and technical specification      |
| 2.4 Product appearance and components name                 |
| 2.5Product dimensions                                      |
| 2.6 Product comprehensive performance indexs               |
| 2.7 Main technical features                                |
| 2.8 Optional accessories description                       |
| 2.9Ordering description                                    |
| 3. Inverter storage and installation 20                    |
| 3.1 Storage and installation environment                   |
| 3.2 Installation direction and space 21                    |
| 3.3 Detachment and installation of cover plate             |
| 3.4 Installation of adjunct card 33                        |
| 3.5 Wiring instruction of PGC2 card                        |
| 3.6 Wiring instruction of PGD2 card                        |
| 4.Inverter wiring 41                                       |
| 4.1 Notice on wiring 41                                    |
| 4.2 Wiring for main circuit terminals                      |
| 4.3 Control circuit terminals                              |
| 4.4 Basic wiring plan of inverter                          |
| 4.5 Input signal wiring plan                               |
| 4.6 System wiring plan                                     |
| 4.7 Wiring Specification                                   |
| 4.8 Input/output AC reactor selection                      |
| 4.9 Brake resistance selection                             |
| 4.10 Installation instructions conform to EMC requirements |
| 5.Operation instructions 58                                |
| 5.1 Operation panel instruction                            |
| 5.2 Key operation                                          |
| 5.3 Main menu configuration diagram                        |
| 5.4 《option》Menu configuration description                 |
| 5.5 《menu》 Menu configuration description                  |
| 6. Inverter test run                                       |
| 6.1 Inverter test run sequence                             |
| 6.2 Inverter test run operation                            |
| 6.2.1 Energization                                         |
| 6.2.2 Display status confirmation                          |
| 6.2.3 Parameter initialization                             |
| 6.2.4 Parameter setting 69                                 |
| 6.2.5 Motor parameter auto-tuning 70                       |
| 6.2.6 Notice before auto-tuning mode                       |
| 6.2.7 No-load operation test run 72                        |
| •                                                          |

# Content

| 6.2.8 Test run with load connected                           | . 73                 |
|--------------------------------------------------------------|----------------------|
| 6.2.9 Parameter save                                         | . 73                 |
| 7. Inverter parameter setting instruction                    | . 75                 |
| 7.1 Initializing parametter control P0                       | 75                   |
| 7.2 Parallel inverter and panel observation configuration P2 | . 75                 |
| 7.3 Digital input set of terminals P3                        | . 75                 |
| 7.4 Digital Output set of terminals P4                       | 77                   |
| 7.5 Analog input set of terminals P5                         | 80                   |
| 7.6 Analog output set of terminals P6                        | 81                   |
| 7.7 Protection setting P7                                    | . 83                 |
| 7.8 Motion Control 1 P8                                      | 86                   |
| 7.9 Motion Control 2 P9                                      | . 89                 |
| 7.10 Motion Control 3 P10                                    | 92                   |
| 7.11 Motion Control 4 P11                                    | . 95                 |
| 7.12 Motor 1 Step Speed Brake Set P12                        | . 98                 |
| 7.13 Motor 2 Step Speed Brake Set P13                        | . 99                 |
| 7.14 Motor 3 Step Speed Brake Set P14                        | . 101                |
| 7.15 Motor 4 Step Speed Brake Set P15                        | . 102                |
| 7.16 Motor 1 Parameter V/F Set P16                           | . 104                |
| 7.17 Motor 2 Parameter V/F Set P17                           | . 107                |
| 7.18 Motor 3 Parameter V/F Set P18                           | . 110                |
| 7.19 Motor 4 Parameter V/F Set P19                           | . 113                |
| 7.20 Motor 1 Vector Control Set P20                          | . 117                |
| 7.21 Motor 2 Vector Control Set P21                          | . 121                |
| 7.22 Motor 3 Vector Control Set P22                          | . 125                |
| 7.23 Motor 4 Vector Control Set P23                          | . 130                |
| 7.24 MODBUS P32                                              | . 134                |
| 7.25 PROFIBUS DP P33                                         | . 135                |
| 8. Specified parameter function description                  | . 146                |
| 8.1 Parallel running and panel observation setting           | . 146                |
| 8.2 Digital input                                            | . 146                |
| 8.3 Digital output                                           | . 147                |
| 8.4 Analog input                                             | . 148                |
| 8.5 Analog output                                            | 148                  |
| 8.6 Protection parameter                                     | 149                  |
| 8 7 Motor start/stop control parameters                      | 153                  |
| 8.8 Motor multi-speed and brake control                      | 157                  |
| 8.9 Motor basic parameters and V/F control parameters        | 158                  |
| 8 10 Motor vector control parameters                         | 162                  |
| 8 11 Advanced application                                    | 167                  |
| 9 Abnormality solutions and inspection                       | 170                  |
| 0 1 Alarm codes                                              | 170                  |
| 0.2 Error codes                                              | 170                  |
| 0.3 Error diagnosis                                          | 175                  |
| 10 Maintenance                                               | 177                  |
| 10.1 Maintenance instructions                                | / /<br>177           |
| 10.2 Politina maintananca                                    | . 1 <i>11</i><br>170 |
| 10.2 Periodic maintenance                                    | . 170<br>170         |
| 10.5 Fenould Mainlehande.                                    | . 170<br>170         |
| 10.4 Displacement of wearing elements                        | . 1/9                |
| IU.D Storage and guarantee                                   | . 179                |

# **1** Safety instructions

Read carefully this manual before installation, running, maintenance and inspection of the inverter.

### 1.1 Symbols



When misused, it will result in danger, serious injury or death.



When misused, it can cause danger, which may result in minor or moderate personal injury or equipment damage.

### Notice



- It is prohibited to touch the heat sink 10 minutes after power on or a while after (1) power off to prevent getting burnt;
- (2) Do not operate the drive on and off frequently andre-energizationis prohibited within five minutes after power switched on again;
- Do not remove the drive cover or touch the printed circuit board under power on (3) state to prevent electric shock;
- (4) Workings as wiring and inspections should be carried out only after the power is turned off ten minutes;
- The inverter ground terminal should be firmly grounded; (5)
- (6) No object is allowed to drop into the inverter.



- The inverter is prohibited to be installation on flammable objects; (1)
- (2) This series of inverters are not suitable in flammable and combustible environment, if needed such special orders, please contact us;
- (3) It is not allowed to dismantle or refit the inverter privately;
- It is prohibited to connect AC power to the inverter output terminals- $U_{x}$  V, W; (4) Do not open the cover plate or perform wiring during the inverter is energized.

Danger

(5)

Please visit the official website for more information: www.guide-edrive.com



### **1.2 Application scope**

- (1) This product is a specialized vector-control inverter which is used for industrial 3 phase AC asynchronous motors.
- (2) The equipment (such as nuclear control systems, aviation systems, safety devices and gauges) that may cause injuries or death due to Inverter malfunction should be treated carefully. Consult the company in such cases.
- (3) The inverter is fabricated under strict quality control. If it used for hazardous equipment, there should be safety protection measures to prevent situation going worse in case of inverter fault.

| Directive     | Directive Name | Standard     |
|---------------|----------------|--------------|
| LVD Directive | 2014/35/EU     | EN 61800-5-1 |
| EMC Directive | 2014/30/EU     | EN 61800-3   |

(4) This inverter complies with the following directive and standards:

### 1.3 Notice on scrapping

GUIDE

Special attention should be paid when treating the scrapped inverter and its elements..

**Electrolytic capacitor:** It may explode during incineration.

**Plastic:** The plastic and rubber materials of the inverter may produce toxic gas, please pay attention when incineration.

Clearance: Please treat the scrapped inverter as industrial waster.

# 2. Product overview

### 2.1 Unpacking check



- a. Ensure the model selection is correct; otherwise it may cause motor abnormal running or inverter damage.
- b. Do not install or run any inverter that is damaged or with damaged elements, otherwise it will cause danger.

#### Waring

Please check the following items after unpacking:

- 1. Check whether there is any damage during transportation. (Such as damage to element, elements get loose and damage to main body)
- 2. Check whether there is manual and guarantee card.
- 3. Check whether the model(s) conform to your order(s).
- 4. Check whether the optional accessories conform to your order(s) if there are optional accessories.

Contact immediately the local agency if there is any damage to the inverter or optional accessories.

### 2.2 Product model and nameplate

Inverter model implication:



Figure 2-1 Model implication

3

60mm HF650 series inverter nameplate is as snown in graphic 2-2(250KW).



MODEL: HF650-250-4L indicates: This is HF650 series inverter with rated power 250KW, voltage level 400V,operator LCD.

AC: It indicates alternative current power input and output.

3PH: It indicates three phase input and output.

380-480V 50/60Hz: It indicates rated input voltage and frequency.

0-480V 0-300Hz: It indicates the output voltage range and output frequency range of the inverter.

### 2.3 Product series models and technical specification

### Table 2-3 Table sheet for inverter HF650 series

|              | Light over     | Heavy c       | verload        |               |      |                |
|--------------|----------------|---------------|----------------|---------------|------|----------------|
| Model        | Current<br>[A] | Power<br>[kW] | Current<br>[A] | Power<br>[kW] | Туре | Weight<br>(Kg) |
| HF650-0R4-4L | 1.8            | 0.4           |                |               |      |                |
| HF650-0R7-4L | 3.3            | 0.75          | 1.8            | 0.4           |      |                |
| HF650-1R5-4L | 4.8            | 1.5           | 3.3            | 0.75          | 11   | 3              |
| HF650-2R2-4L | 5.7            | 2.2           | 4.8            | 1.5           |      |                |
| HF650-3R7-4L | 10.2           | 3.7           | 5.7            | 2.2           | 10   | 0              |
| HF650-5R5-4L | 15             | 5.5           | 10.2           | 3.7           | 12   | 3.5            |

Figure 2-2 Nameplate implication

GUID

| HF650-7R5-4L | 18  | 7.5  | 15  | 5.5  |    |       |
|--------------|-----|------|-----|------|----|-------|
| HF650-011-4L | 24  | 11   | 18  | 7.5  |    |       |
| HF650-015-4L | 32  | 15   | 24  | 11   | 10 |       |
| HF650-018-4L | 41  | 18.5 | 32  | 15   | 13 | 4.5   |
| HF650-022-4L | 47  | 22   | 41  | 18.5 |    |       |
| HF650-030-4L | 65  | 30   | 47  | 22   | 14 | 10.5  |
| HF650-037-4L | 75  | 37   | 65  | 30   |    |       |
| HF650-045-4L | 94  | 45   | 75  | 37   |    |       |
| HF650-055-4L | 115 | 55   | 94  | 45   | 15 | 35    |
| HF650-075-4L | 155 | 75   | 115 | 55   |    |       |
| HF650-090-4L | 188 | 90   | 155 | 75   |    |       |
| HF650-110-4L | 215 | 110  | 188 | 90   | 16 | 52    |
| HF650-132-4L | 265 | 132  | 215 | 110  |    |       |
| HF650-160-4L | 330 | 160  | 265 | 132  | 17 | 108.5 |
| HF650-185-4L | 365 | 185  | 330 | 160  |    |       |
| HF650-220-4L | 438 | 220  | 365 | 185  |    |       |
| HF650-250-4L | 485 | 250  | 438 | 220  |    |       |
| HF650-280-4L | 545 | 280  | 485 | 250  | 18 | 146   |
| HF650-315-4L | 610 | 315  | 545 | 280  |    |       |
| HF650-355-4L | 668 | 355  | 610 | 315  |    |       |
| HF650-400-4L | 720 | 400  | 668 | 355  | 19 | 210   |
| HF650-450-4L | 820 | 450  | 720 | 400  |    |       |

Note:

Light-overload conditions: overload capacity is120% of the rated output current, and one minute overload is allowed every 5 minutes.

Heavy overload conditions: overload capacity is 150% of the rated output current, and one minute overload is allowed every 5 minutes.

### 2.4 Product appearance and components name

HF650 series high-powerinvertershell is made of metal material, the surface is sprayed with plastic, and the plane is bright; The small-power inverter shell is molded with

Please visit the official website for more information: www.guide-edrive.com



plastic, which has a beautiful appearance.

## The following graphic shows HF650-0R4-4L to HF650-7R5-4L.



A-Operator B-Cover plate C-Grille D-Main terminal



GUIDE

2

.

# HF650-011-4 Lto HF650-018-4L



A-Operator B-Cover plate C-Grille D-Main terminal

E-Radiator F-Installation hole G-Cooling fan



# HF650-022-4 Lto HF650-037-4L





GUIDF

E-Radiator F-Installation hole G-Cooling fan1 H-Cooling fan2

8

2

# HF650-045-4L to HF650-75-4L



A-Cover plate bolt B-Cover plate C-Cooling fan1 D-Cooling fan2 E-Installation hole F- Radiator G-OperatorH-Grillel-Main terminal





# HF650-90-4L to HF650-450-4L





E-Installation hole F- Radiator G-OperatorH-Grille I-Main terminal



10

GUIDE

2

# 2.5 Product dimensions

Inverter dimension diagram















Please visit the official website for more information: www.guide-edrive.com

12







15-16 model diagram





17-19 model diagram

14

# Apperance and installation dimensions

| Mo<br>del | Power  | Appearance dimensions<br>(Unit:mm) |      |     |     |     |      |      | tall<br>Isions<br>mm) | Hole<br>Dia.  | Recom<br>m.<br>Install<br>bolt<br>(Level<br>8.8) | Wgh<br>(Kg) |
|-----------|--------|------------------------------------|------|-----|-----|-----|------|------|-----------------------|---------------|--------------------------------------------------|-------------|
|           |        | H1                                 | H2   | W1  | W2  | D1  | D2   | A    | В                     | φ             | М                                                |             |
|           | 0.4KW  |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
| т 1       | 0.75KW | 260                                | 254  | 140 | 194 | 170 | E0 E | 940  | 100                   | 1 46          | 4 M5                                             | 0           |
|           | 1.5KW  | 200                                | 204  | 140 | 154 | 170 | 52.5 | 240  | 122                   | 4-Φ0          | 4-M9                                             | 3           |
|           | 2.2KW  |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
|           | 3.7KW  |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
| 19        | 5.5 KW | 260                                | 254  | 140 | 124 | 170 | 59 5 | 248  | 199                   | 1- d 6        | 4-M5                                             | 35          |
| 12        | 7.5 KW | 200                                | 204  | 140 | 104 | 110 | 52.5 | 240  | 122                   | 4 40          | -1 MD                                            | 0.0         |
|           | 11 KW  |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
| 13        | 15 KW  | 300                                | 294  | 180 | 174 | 170 | 52.5 | 288  | 162                   | 4- <b>Φ</b> 6 | 4-M5                                             | 4.5         |
| 10        | 18.5KW |                                    | 201  | 100 |     | 110 | 02.0 | _000 | 102                   | 1 10          | 1 110                                            |             |
|           | 22 KW  |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
| Ι4        | 30 KW  | 370                                | 364  | 275 | 269 | 215 | 75   | 355  | 255                   | 4-Φ7          | 4-M6                                             | 10.5        |
|           | 37 KW  |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
|           | 45 KW  |                                    |      |     |     |     |      |      |                       |               | 4 140                                            |             |
| Ι5        | 55 KW  | 600                                | 565  | 340 | 326 | 282 | 110  | 585  | 225                   | $2-\Phi 9$    | 4-M8                                             | 35          |
|           | 75 KW  |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
| I6        | 90 KW  | 760                                | 710  | 400 | 386 | 327 | 100  | 742  | 275                   | $2 - \Phi 9$  | 4-M8                                             | 52          |
|           | 110 KW |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
| 17        | 132 KW | 020                                | 950  | 400 | 476 | 00E | 155  | 000  | 250                   | 2 4 1 2       | 6 M19                                            | 109 5       |
| 11        | 100 KW | 930                                | 000  | 490 | 470 | 555 | 155  | 900  | 500                   | $3 - \Phi 13$ | 0-m12                                            | 106.0       |
|           | 220 KW |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
|           | 220 KW |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
| 18        | 280KW  | 1140                               | 1060 | 500 | 486 | 355 | 155  | 1110 | 350                   | 3- \$ 13      | 6-M12                                            | 146         |
|           | 315 KW |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
|           | 355 KW |                                    |      |     |     |     |      |      |                       |               |                                                  |             |
| 19        | 400 KW | 1275                               | 1195 | 700 | 686 | 370 | 155  | 1245 | 500                   | 3-Φ15         | 6-M14                                            | 210         |
|           | 450 KW |                                    |      |     |     |     |      |      |                       |               |                                                  |             |



# 2.6 Product comprehensive performance indexs

|            | ltem                               | Description                                                                                 |  |  |  |  |
|------------|------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
|            | Input voltage                      | 3Phase                                                                                      |  |  |  |  |
|            | Rated frequency                    | 50/60Hz                                                                                     |  |  |  |  |
| Input      | Allowable voltage<br>fluctuation   | -15%~+10%                                                                                   |  |  |  |  |
|            | Allowable frequency<br>fluctuation | frequency fluctuation range :fLN $\pm 2\%$ . frequency fluctuation rate : $\leq 2\%$ fLN/s. |  |  |  |  |
|            | Voltage                            | 0~Input voltage                                                                             |  |  |  |  |
| Output     | Voltage unsymmetric                | 3PhaseVoltage unsymmetrical: $\leq 1\%$                                                     |  |  |  |  |
|            | Frequency                          | 0-300Hz                                                                                     |  |  |  |  |
|            | Running command source             | Operator control, terminal control and communication control                                |  |  |  |  |
|            | Carrier frequency                  | 1kHz $\sim$ 10kHz, adjustable based on temp. & load characters                              |  |  |  |  |
|            | Frequency resolution               | Digital setting: 0.01Hz; Analog setting: Max. frequency x0.1%                               |  |  |  |  |
|            | Construct we obliged               | Closed loop vector control (VC), Open loop vector                                           |  |  |  |  |
|            | Control method                     | control(SVC), V/F Control                                                                   |  |  |  |  |
|            | V/F control                        | Linear type, multipoint type and square type                                                |  |  |  |  |
|            | Torque control                     | With or without PG torque control                                                           |  |  |  |  |
|            | Max. speed                         | 300Hz, based on motor's electrical and mechanical characteristics                           |  |  |  |  |
|            | Starting torque                    | 0Hz/180%(VC and SVC)、0.8Hz/150%(V/F)                                                        |  |  |  |  |
|            | Speed regulation range             | 1:500(SVC)、1:1000(VC)                                                                       |  |  |  |  |
| Control    | Speed accuracy                     | ±0.02% of rated speed(VC)、±0.2% of rated speed (SVC)、<br>±0.5% of rated speed (V/F)         |  |  |  |  |
| Characters | Overload capacity                  | Ever 5 minute,120%of rated current for 60S、150% of rated current for60S                     |  |  |  |  |
|            | Torque compensation                | Automatic torque compensation function                                                      |  |  |  |  |
|            | Acceleration&                      |                                                                                             |  |  |  |  |
|            | Deceleration method                | Straight line, user defined multipoint curve                                                |  |  |  |  |
|            | Auto Voltage                       | It will automatically hold stably the output voltage when the                               |  |  |  |  |
|            | adjustment                         | grid voltage has fluctuation.                                                               |  |  |  |  |
|            | DC brake method                    | The DC brake acts both in start and stop.                                                   |  |  |  |  |
|            | Built in Process DID               | VC control system that can realize process quantity                                         |  |  |  |  |
|            | Built-III FIOCESS FID              | (pressure, temperature and flow, etc) with convenience.                                     |  |  |  |  |
|            | Commumication                      | DP、CAN、Modbus、Ethernet、Profinet                                                             |  |  |  |  |
|            | special functions                  | Logic function module、 Mathematical function modules 、<br>Timer module 、 PID module 、       |  |  |  |  |

|                 |                      | Multi-curveacceleration/deceleration function 、 Timer control                                                    |  |  |  |  |  |  |
|-----------------|----------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                 |                      | run / stop control $\$ Power Optimizatio $\$ Position control of                                                 |  |  |  |  |  |  |
|                 |                      | grab crane、                                                                                                      |  |  |  |  |  |  |
|                 |                      | Cranes brake on/off function、Master / Slave synchronization                                                      |  |  |  |  |  |  |
|                 |                      | control 🕔 speed / torque control .                                                                               |  |  |  |  |  |  |
|                 |                      | 8 digital input, 2 analog input(Voltage -10 $\sim$ +10V or Current                                               |  |  |  |  |  |  |
| ,               | Input terminals      | 0mA/4mA $\sim$ 20mA )                                                                                            |  |  |  |  |  |  |
|                 |                      | 5 digital output(3 sourcing output and 2 relay output) ,2                                                        |  |  |  |  |  |  |
| terminals       | Output terminals     | analog output (Voltage 0 $\sim$ +10V or Current 0mA/4mA $\sim$                                                   |  |  |  |  |  |  |
|                 |                      | 20mA )                                                                                                           |  |  |  |  |  |  |
| H&M             | 0 1 1 0 0            | It can set corresponding parameters or display output                                                            |  |  |  |  |  |  |
| Interface       | Operator LCD         | frequency, output voltage and output current, etc                                                                |  |  |  |  |  |  |
| Duct            | ation frontian       | Protection for overcurrent, overvoltage, undervoltage,                                                           |  |  |  |  |  |  |
| Prote           | ection function      | overheat and overload, etc.                                                                                      |  |  |  |  |  |  |
|                 |                      | It is prohibited to be exposed directly under the sun or dusty                                                   |  |  |  |  |  |  |
| Ope             |                      | and corrosive environment.                                                                                       |  |  |  |  |  |  |
|                 |                      | Below altitude of 1, 000 meters. In areas of altitude over 1000                                                  |  |  |  |  |  |  |
|                 | Altitude             | meters, the rated output should be reduced by 1% each                                                            |  |  |  |  |  |  |
|                 |                      | additional 100 meters.In areas of altitude over 3000 meters,                                                     |  |  |  |  |  |  |
|                 |                      | please consult manufacturer                                                                                      |  |  |  |  |  |  |
| Ambient         |                      | Ambient temperature -10 $^\circ C$ ~ +40 $^\circ C$ . If the temperature                                         |  |  |  |  |  |  |
| environment     | Ambient temp.        | range is between +40 $^\circ\!\mathrm{C}$ ~ +50 $^\circ\!\mathrm{C}$ , increased by 1 $^\circ\!\mathrm{C}$ , the |  |  |  |  |  |  |
|                 |                      | rated output current is reduced by 3%. If the temperature is                                                     |  |  |  |  |  |  |
|                 |                      | more than 50 $^\circ\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                      |  |  |  |  |  |  |
|                 | Humidity             | Lower than95%RH without waterdroop condensation.                                                                 |  |  |  |  |  |  |
|                 | Storage temp.        | -20℃~ +60℃                                                                                                       |  |  |  |  |  |  |
|                 | Power factor         | Inveter :>0.85; AFE:>0.999                                                                                       |  |  |  |  |  |  |
|                 | efficiency           | >98%                                                                                                             |  |  |  |  |  |  |
|                 | Ontional accessories | There are three sockets on control-card . Communication                                                          |  |  |  |  |  |  |
|                 |                      | card and IO card can insert to socket J14;IO card can insert                                                     |  |  |  |  |  |  |
| <u>0</u> 46 e - | description          | to socket J15; PG card can insert to socket J13.                                                                 |  |  |  |  |  |  |
| Other           | Other connector      | operation keyboard outside of the inverter                                                                       |  |  |  |  |  |  |
|                 | Protection class     | IP20                                                                                                             |  |  |  |  |  |  |
|                 | Cool                 | Fan                                                                                                              |  |  |  |  |  |  |
|                 | Contaminate class    | 2                                                                                                                |  |  |  |  |  |  |
|                 | Noise                | ≪80db                                                                                                            |  |  |  |  |  |  |

### 2.7 Main technical features

- (1) Both open loop and closed loop vector can reach zero speed with200% torque output;
- (2) When the load does not exceed 50% of the rated motor load, the GUIDE

Please visit the official website for more information: www.guide-edrive.com



HF650inverters can implement auto-tuning with load, under which condition the obtained motor parameters are the same as that obtained under no-load condition;

(3) GUIDE HF650inverters own built-in constant power control module: when entering the constant power flux-weakening speed regulation zone, the output frequency is automatically adjusted according to the load;

### 2.8 Optional accessories description

| Name                    | Туре      | Description                                                                                                                                                                                                                               |  |  |  |
|-------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bus card                | GDHF-DP03 | GDHF-DP03 bus card conform to Profibus field bus inter<br>national standards which can be used with HF650 series<br>inverter.                                                                                                             |  |  |  |
| Communication<br>card   | GDHF-MB02 | GDHF-MB02 communication card supports MODBUS-R<br>slave protocol with RS485 interface and RS232 interface<br>providing networked with the RS485 or RS2<br>MODBUS-RTU interface device, used in conjunction with<br>HF650 series inverter. |  |  |  |
| technical card          | GDHF-GY02 | GDHF-GY02 technical cardwhich can be used with HF650 series inverter.                                                                                                                                                                     |  |  |  |
| General PG card         | GDHF-PGC2 | GDHF-PGC2 General PG card can be used as encoder that<br>connected with inverter's adapter, which can be used<br>with HF650 series inverter. (output DC voltage is 15V)                                                                   |  |  |  |
| synchronized PG<br>card |           | GDHF-PGD2 synchroniaed PG card can be used as encoder<br>that connected with inverter's adapter, which can be used<br>with HF650 series inverter synchronizing function. (output DC<br>voltage is 15V)                                    |  |  |  |
| keyboard                | GDHF-KV2  | GDHF-KV2 keyboard is the second generation of Guide,<br>which is the same with HF650 series inverter built-in key<br>board.                                                                                                               |  |  |  |
| PN Card                 | GDHF-PN02 | PROFINET is based on Industrial Ethernet Technology, and acrroding to TCP/IP and IT strandard. GDHF-PN02 card supported PROFINET slave protocol, and it is worked with HF630 series Inverter.                                             |  |  |  |



| Option of built-in<br>brake unit<br>External brake u<br>nit | BU055-4    | The option of built-in brake unit for 45KW-75KW inverter .       |
|-------------------------------------------------------------|------------|------------------------------------------------------------------|
|                                                             | BU090-4    | The option of built-in brake unit for 90KW-110KWinverter.        |
|                                                             | BU110-4    | The option of built-in brake unit for 132KWinverter.             |
|                                                             | BU160-4    | The option of built-in brake unit for 160KW-185KWinverte<br>r.   |
|                                                             | GDBU-4045B | Inverter model selection refer to 《User Manual for Braking Unit》 |
|                                                             | GDBU-4220B | Inverter model selection refer to 《User Manual for Braking Unit》 |

Note: The brake unit matched with HF650 series inverter is optional,45KW-185KW are built -in brake unit ,220KW and more than 220KW are external brake unit.

### 2.9Ordering description

If you need the above accessories ,please specify when ordering. Example when ordering 132KW inverter (400V voltage level) and brake unit,list of order goods is:HF650-132-4+ BU110-4 $_{\circ}$ 

# 3. Inverter storage and installation



### 3.1.1 Storage environment

- The inverter must be placed in dry locations with no dust.
- The storage ambient temperature range is -20  $^{\circ}$ C to +60  $^{\circ}$ C.
- The relative humidity is in the range of 0% to 95% and non-condensing.

- The storage environment should be free of corrosive gases and liquids.
- Better to place the inverter on a shelf and packed suitably.
- Better not to store a inverter for a long time that may cause deterioration of electrolytic capacitors, for long-term storage, ensure that it must be energized once a year with energizing time at least five hours, and the input voltage must be slowly increased by the voltage regulator to the rated voltage.

### 3.1.2 Installation environment

- Mounted vertically inside the cabinet with good indoor ventilation.
- Ambient temperature -10 °C ~ +40 °C. If the temperature range is between +40 °C ~ +50 °C, increased by 1 °C, the rated output current is reduced by 3%.
  If the temperature is more than 50 °C, please consult manufacturer.
- Try to avoid high temperature and humidity; humidity should be less than 95% RH, and no rain dropping.
- Do not install the inverter on flammable materials, such as wooden materials.
- Avoid direct sunlight.
- The environment should be free of flammable, corrosive gases and liquids.
- There should be no dust, oily dust, floating fiber and metal particles.
- The installation base should be strong without vibration.
- There should be no Electro Magnetic Interference, and be away from the interference source.
- Below altitude of 1, 000 meters. In areas of altitude over 1000 meters, the rated output should be reduced by 1% each additional 100 meters. In areas of altitude over 3000 meters, please consult manufacturer.

Note: The site installation environmental conditions will affect the life of the inverter.

### 3.2 Installation direction and space

### 3.2.1 Installation direction

In order to facilitate the inverter cooling, theinverter should be installed in a vertical

Please visit the official website for more information: www.guide-edrive.com

21

direction.inverter should be installed on wall or in cabinet.



### 3.2.2Installation method

There are two installation methods according to dimension of inverter.

(1) installed on wall(for all dimension of inverter)





picture 3-1installed on wall

Ensure the ventilation space. The following table shows the gap size (recommended value) of the inverter installation.



#### $0.4kW \sim 18.5kW$



45kW~450kW







### Gap size table

| Inverter type | Gap     | size   |
|---------------|---------|--------|
| 0.4kW~18.5kW  | A≥100mm | B≥40mm |
| 22kW~37kW     | A≥200mm | B≥50mm |
| 45kW~450kW    | A≥300mm | B≥50mm |

(2) Installed by inlaying

**GUID** 





Please visit the official website for more information: www.guide-edrive.com



Please visit the official website for more information: www.guide-edrive.com





picture 3-5 The size of inlaying board for I1-I2 inverter



picture 3-6 The size of inlaying board for I3 inverter

26

GUID



picture 3-7 The size of inlaying board for I4 inverter



picture 3-8 The size of inlaying board for I5-I6 inverter





picture 3-9 The size of inlaying board for I7-I9 inverter

| install dimensions<br>(Unit: mm) |     | install dimensions Holedimensions (Unit:<br>(Unit: mm) mm) |     | Decement in stell helt |                      |
|----------------------------------|-----|------------------------------------------------------------|-----|------------------------|----------------------|
| type                             | А   | В                                                          | С   | D                      | Recomm. Install bolt |
| 11                               | 248 | 122                                                        | 258 | 136                    | 4-M5                 |
| 12                               | 248 | 122                                                        | 258 | 136                    | 4-M5                 |
| 13                               | 288 | 162                                                        | 298 | 178                    | 4-M5                 |
| 14                               | 355 | 255                                                        | 368 | 273                    | 4-M6                 |
| 15                               | 585 | 275                                                        | 570 | 330                    | 4-M6                 |
| 16                               | 742 | 275                                                        | 715 | 390                    | 4-M8                 |

The size of inlaying board table



| 17 | 900  | 350 | 855  | 480 | 6-M12 |
|----|------|-----|------|-----|-------|
| 18 | 1110 | 350 | 1065 | 490 | 6-M12 |
| 19 | 1245 | 500 | 1200 | 690 | 6-M14 |

### 3.2.3 many inverters installed

### (1) parallel installation

When several inverter of different sizes are installed in parallel, please align the upper part of inverter and install it again. The minimum gap between inverter is 100mm.

### (2) vertical installation

When invetr is instaled vertically, the windshield must be added, otherwise the interaction of multiple inverters will cause bad heat dissipation.vertical installation is shown below.





# (3) Inclined installation

GUID

When many inverters are inclined to install, it is necessary to ensure the separation of the inside duct and outside duct of the inverter, so as to avoid the mutual influence. The inclined installation of multiple inverters is shown below.



# 3.3 Detachment and installation of cover plate

Removing steps:

(1) According to the direction arrow 1 indicates, first screw out the positive four cover screws about 5mm.

(2) According to the direction arrow 2 indicates, then slightly move down the



cover plate.

(3) According to the direction arrow 3 indicates, and then move the lower cover plate.

To install the cover plate, the procedure is opposite to the above ones.



Table 3-10 Dismantle and installation of inverter cover plate

3



GUID
# 3.4 Installation of adjunct card

The installation of HF650 inverter adjunct card is as follows:



E- DP card adapter connector

Installation of 37kW and below inverter adjunct card

Installation of DP car connector of 18.5KW and below inverter, please remove the side baffle of inverter. The diagram is shown below:



33

GUIDE



Installation of 37kW above inverter adjunct card

# 3.5 Wiring instruction of PGC2 card

There is a total of 11 user terminals of GDHF-PGC2 general PG card:

|    | A+ | A-  | B+ | B- | Z+  | Z- |   |
|----|----|-----|----|----|-----|----|---|
| +1 | 5V | GND | A  | 0  | GND | B  | О |

Terminal function description:

GUID

| descriptio<br>n<br>terminal | function                 | response<br>speed | Voltage<br>range | Output<br>current |
|-----------------------------|--------------------------|-------------------|------------------|-------------------|
| +15V,GND                    | Encoder power<br>supply  |                   | 15V±5%           | 300mA             |
| A+,A-<br>B+,B-<br>Z+,Z-     | Encoder signal<br>access | 0-80kHz           | 0-15V            |                   |
| AO,GND<br>BO                | Digital output           | 0-50kHz           | 0-24V            |                   |

Note: PE is shielding wire shielding layer terminals (ground the PE when used).

PGC2 card wiring principle diagram:



Wiring precautions:

(1) PG card signal line and the power line should be arranged separately, avoiding parallel lines;

(2) In order to avoid the encoder signal being interfered, please use shielded cable for the PG card signal line;

(3) Theshielded layer of encoder shielded cable should be connected to the earth (such as the inverter PE terminal), and must be earthed by single end, in order to avoid signal interference;

(4) No matter single-ended or differential, short circuit is prohibited on PG card A-B-, Z-, GND;

(5) Guide PGC2 card supports a wide voltage range including15V long drive type (RS-422) output encoder.

For field use of encoder, output mode should be firstly determined. Guide PGC2 card supports push-pull, collector open type, voltage type, long drive type (15V) encoder.

(1) Encoder output type: push-pull output

Please visit the official website for more information: www.guide-edrive.com



## a. Differential connection mode



## b. Single-ended connection mode



### (2) Encoder output mode: open-collector output

| Connection diagram  | Application example  |        |                    |
|---------------------|----------------------|--------|--------------------|
|                     | 1.0~1.5kO 0.5W       | Brand  | encoder model      |
|                     | A+ A A               | Gambol | HLE45-1024L-3OC.AC |
| 0<br>Shielded cable | B-<br>Z+<br>Z-<br>PE | ELCO   | EB38A6-C4PR-1024   |

(3) Encoder output mode: voltage output

GUID

| Connection diagram                                   | Ap     | oplication example |
|------------------------------------------------------|--------|--------------------|
| VCC +15V<br>OV GND                                   | Brand  | encoder model      |
|                                                      | Gambol | HLE45-600L-3R.AC   |
| 0<br>B+<br>B-<br>Z+<br>Z+<br>Z-<br>Shielded cable PE | ELCO   | EB50A8-N4PR-1024   |

## (4) Encoder output mode: long drive output(support 15V voltage)

| Connection diagram                                         | Application example |                       |  |
|------------------------------------------------------------|---------------------|-----------------------|--|
| VCC +15V                                                   | Brand               | encoder model         |  |
| OV GND<br>A A+                                             | Gambol              | HLE-45-600L-6LY.AC    |  |
| A-           B           B+                                | P+F                 | RHI58N-0BAK1R6XN-1024 |  |
| 0     B     B-       Z-     Z-       Shielded cable     PE | ELCO                | EC120P45-L6TR-1024    |  |

## 3.6Wiring instruction of PGD2 card

# There is a total of 10 user terminals of GDHF-PGD2 synchronization PG card:





Terminal function description:

| descriptio<br>n<br>terminal | function                 | response<br>speed | Voltage<br>range | Output<br>current |
|-----------------------------|--------------------------|-------------------|------------------|-------------------|
| +15V,GND                    | Encoder power<br>supply  |                   | 15V±5%           | 300mA             |
| A+,A-<br>B+,B-              | Encoder signal<br>access | 0-80kHz           | 0-15V            |                   |
| A1+,A1-<br>B1+,B1-          | Encoder signal<br>access | 0-50kHz           | 0-15V            |                   |

Note: PE is shielding wire shielding layer terminals (ground the PE when used).

PGD2 card wiring principle diagram:

Please visit the official website for more information: www.guide-edrive.com



Wiring precautions:

(1) PG card signal line and the power line should be arranged separately, avoiding parallel lines;

(2) In order to avoid the encoder signal being interfered, please use shielded cable for the PG card signal line;

(3) The shielded layer of encoder shielded cable should be connected to the earth (such as the inverter PE terminal), and must be earthed by single end, in order to avoid signal interference;

For field use of encoder, output mode should be firstly determined. Guide PGD2 card supports push-pull, collector open type, voltage type, long drive type (15V) encoder.

- (1) Encoder output type: push-pull output
  - a. Differential connection mode



b. Single-ended connection mode

GUID

| Connection diagram            | Application example |                           |  |
|-------------------------------|---------------------|---------------------------|--|
|                               | Brand               | encoder model             |  |
|                               | Gambol              | HLE45-600L-3F.AC          |  |
|                               | P+F                 | RVI78N-10CALA31N-1<br>024 |  |
| B+<br>B-<br>Shielded cable PE | ELCO                | EC120P45-P6PR-1024        |  |

## (2) Encoder output mode: open-collector output

| Connection diagram     | A      | oplication example |
|------------------------|--------|--------------------|
| VCC +15V<br>0V CO +15V | Brand  | encoder model      |
|                        | Gambol | HLE45-1024L-3OC.AC |
| Shielded cable PE      | ELCO   | EB38A6-C4PR-1024   |

# (3) Encoder output mode: voltage output

| Connection diagram     | Aj     | oplication example |
|------------------------|--------|--------------------|
| VCC +15V               | Brand  | encoder model      |
|                        | Gambol | HLE45-600L-3R.AC   |
| B<br>Shielded cable PE | ELCO   | EB50A8-N4PR-1024   |

In synchronizing function application, the encoder with differential output signal



#### wiring diagram is as follows:



In synchronizing function application, the encoder with single-ended output signal wiring diagram is as follows:





GUID

# 4.Inverter wiring

#### 4.1 Notice on wiring

- (1) The wiring must be carried out by qualified technicians.
- (2) Before wiring, make sure that the power supply has been completely turn off more than 10 minutes; otherwise there is the risk of electric shock.
- (3) It is prohibited to connect the power wire to the inverter output terminals U, V,W.
- (4) The inverter and the motor must be firmly grounded.
- (5) Ensure that there is an intermediate circuit breaker between the inverter and the power supply to avoid accidents to expand in case of inverter failure.
- (6) When a magnetic contactor is installated between the inverter and the motor, the timing of the contactor action should be guaranteed, the contactor can act only when the inverter has no output.
- (7) As shown in Figure 4-1, the inverter U, V, W output terminals can not be added with capacitor absorbing or other RC absorbing device.



Figure 4-1 Output terminals can not be added with RC absorbing device

- (8) In order to reduce electro magnetic interference, connect surge absorber(s) to coils of magnetic contactor and relays in circuit that around the inverter.
- (9) Use multi-core shielding cable or twisted pair to connect control terminals. Control cables should be 10cm or more away from the main circuit and high voltage cables (including power cables, motor cables, relays and contactors)

Please visit the official website for more information: www.guide-edrive.com

cables, etc.) during wiring.

- (10)Wiring of relay input and output circuits should use more than 0.75mm<sup>2</sup> shielding twisted wires or shielding cables. The inverter's ground terminals are connected to the shield ground, the wiring length is less than 50m.
- (11)The control cables should be separated from the main circuit(motive) power cables, and the distance between parallel wiring cables should be more than 10cm, cross- wiring should be vertical.
- (12)Cable length between the inverter and the motor should be less than 50m, when the length is greater than 50m, it is suggested to add output reactor.
- (13)All leading wires must be tightened sufficiently to terminals to ensure good contact. Main circuit leading wires should be cable or copper busbar. When using cables, make sure the corresponding cross-section for cold-pressed or firmly welded before implementation of wiring.
- (14)All leading wires withstand voltage levels must match that of the inverter.
- (15)Shielding cable is recommended for output cables (between inverter and motor) longer than 30 m.

### 4.2 Wiring for main circuit terminals

GUID

(1) I type main circuit terminals

Main circuit terminals of 0.4KW ~ 75KW is shown as below:



(2) II type main circuit terminals

Main terminals of 90KW ~ 185KW is shown as below:



(3) III type circuit terminals

Inverter of 220kW ~ 450kW use this type of terminal blocks:







Brake resistance

# Instructions for main circuit terminal wiring tools:

| Туре | Power   | Screw<br>specifications | ΤοοΙ                                 |  |  |  |
|------|---------|-------------------------|--------------------------------------|--|--|--|
|      | 0.4KW   |                         |                                      |  |  |  |
| l1   | 0.75KW  |                         |                                      |  |  |  |
|      | 1.5KW   |                         |                                      |  |  |  |
|      | 2.2KW   | N/A                     |                                      |  |  |  |
|      | 3.7KW   | 1114                    |                                      |  |  |  |
| 12   | 5.5 KW  |                         |                                      |  |  |  |
|      | 7.5 KW  |                         | Cross screwdriver                    |  |  |  |
|      | 11 KW   |                         |                                      |  |  |  |
| 13   | 15 KW   | M5                      |                                      |  |  |  |
|      | 18.5 KW | CIVI                    |                                      |  |  |  |
|      | 22 KW   |                         |                                      |  |  |  |
| 14   | 30 KW   | M6                      |                                      |  |  |  |
|      | 37 KW   |                         |                                      |  |  |  |
|      | 45 KW   |                         |                                      |  |  |  |
| 15   | 55 KW   | M8                      | Cross screwdriver double offse       |  |  |  |
|      | 75 KW   |                         | ring spanner or socket wrench        |  |  |  |
| l6   | 90 KW   |                         |                                      |  |  |  |
|      | 110 KW  |                         |                                      |  |  |  |
|      | 132 KW  |                         |                                      |  |  |  |
| 17   | 160 KW  |                         |                                      |  |  |  |
|      | 185 KW  |                         |                                      |  |  |  |
|      | 220 KW  | M10                     |                                      |  |  |  |
| 18   | 250 KW  |                         | Double offset ring spanner or socket |  |  |  |
|      | 280KW   |                         | wrench                               |  |  |  |
|      | 315 KW  |                         |                                      |  |  |  |
|      | 355 KW  |                         |                                      |  |  |  |
| 19   | 400 KW  | M12                     |                                      |  |  |  |
|      | 450 KW  |                         |                                      |  |  |  |

GUIDF

| Terminal<br>symbol | Function description                                         |  |  |  |
|--------------------|--------------------------------------------------------------|--|--|--|
| P(+)               | DC side voltage plus terminals                               |  |  |  |
| P1                 | 45KW and above inverter internally<br>installedreactor       |  |  |  |
| N(-)               | DC side voltage minus terminals                              |  |  |  |
| R、S、T              | Connect to power grid 3P AC power                            |  |  |  |
| U, V, W            | Connect to 3P AC motor                                       |  |  |  |
| DBR                | Brake resistance terminals for inverter<br>of 37KW and below |  |  |  |
| PE                 | Inverter grounding terminals or grounding points.            |  |  |  |

# 4.3 Control circuit terminals

| Terminal<br>No.  | 1    | 2   | 3    | 4    | 5    | 6    | 7    | 8   |
|------------------|------|-----|------|------|------|------|------|-----|
| Terminal<br>name | +10V | GND | Al1+ | AI1- | Al2+ | Al2- | AO1  | AO2 |
| Terminal<br>No.  | 9    | 10  | 11   | 12   | 13   | 14   | 15   | 16  |
| Terminal<br>name | DI1  | DI2 | DI3  | DI4  | DI5  | DI6  | DI7  | DI8 |
| Terminal<br>No.  | 17   | 18  | 19   | 20   | 21   | 22   | 23   | 24  |
| Terminal<br>name | PW   | СОМ | PW   | +24V | +24V | DO1  | +24V | DO2 |
| Terminal<br>No.  | 25   | 26  | 27   | 28   | 29   | 30   | 31   |     |
| Terminal<br>name | +24V | DO3 | DO4A | DO4C | DO4B | DO5A | DO5C |     |

(1) Control circuit terminals diagram

Please visit the official website for more information: www.guide-edrive.com

45

(2) Analog output jumper sketch map



Figure b. Jumper sketch map (voltage analog output)

(3) Control circuit terminals function description

Terminal 1 (+10 V): Analog 10V power output;

Terminal 2 (GND): Analog voltage input negative;

Terminal 3 (Al1 + / AV1): Analog 1 input current positive, with input range of 0/4 ~ 20mA, can also be used as analog 1 voltage input positive, with input range of -10 ~ 10V;

Terminal 4 (AI1-): Analog 1current input negative;

Terminal 5 (Al2 + / AV2): Analog 2 current input positive with input range of 0/4 ~ 20mA, can also be used as analog 2 voltage input with input range of -10 ~ 10V;

Terminal 6 (Al2-): Analog 2 current input negative;

- Terminal 7 (AO1): Analog 1 channel output positive, the output current 0/4 ~ 20mA (J9 jumper selects I, Figure a), the output voltage 0 ~ 10V (J9 jumper selects V, Figure b);
- Terminal 8 (AO2): Analog 2 channel output positive, the output current 0/4 ~ 20mA (J10 jumper selects I, Figure a), the output voltage 0 ~ 10V (J10 jumper selects V, Figure b);
- Terminal 9 (DI1): Digital input 1;
- Terminal 10 (DI2): Digital input 2;
- Terminal 11 (DI3): Digital input 3;
- Terminal 12 (DI4): Digital input 4;



4

- Terminal 13 (DI5): Digital input 5;
- Terminal 14 (DI6): Digital input 6;
- Terminal 15 (DI7): Digital input 7;
- Terminal 16(DI8): Digital input 8;
- Terminal 17 (PW): Digital common end;
- Terminal 18 (COM): 24V power end;

Terminal 19 (PW): Digital common end;

- Terminal 20 (+24 V): 24V power output;
- Terminal 21 (+24 V): 24V power output;
- Terminal 22 (DO1): Open collector output 1, DC24V 50mA or less;
- Terminal 23 (+24 V): 24V power output;
- Terminal 24 (DO2): Open collector output 2, DC24V 50mA or less
- Terminal 25 (+24 V): 24V power output;
- Terminal 26 (DO3): Open collector output 3, DC24V 50mA or less
- Terminal 27 (DO4A): Digital output terminal 4 normally opens, relay output;
- Terminal 28 (DO4C): Digital output terminal 4 common end;
- Terminal 29 (DO4B): Digital output terminal 4 normally closed, relay output;
- Terminal 30 (DO5A): Digital output terminal 5 normally opens, relay output;
- Terminal 31 (DO5C): Digital output terminal 5 common end.



#### 4.4 Basic wiring plan of inverter



#### 4.5Input signal wiring plan

GUI

Common emitter mode (0V is the common end of the input signal). When the



external input signal comes from the NPN transistor, please connect as shown below.

Use the power of inside

Use the power of outside

DI7

DI8

PW

żψ

Żຊ≉

Common collector mode (+24V is the common end of the input signal). When the external input signal comes from the PNP transistor, please connect as shown below. Inside



Use the power of inside

Use the power of outside



# 4.6 System wiring plan



| Element name     | Description                                                                                                                                                                                                                                                              |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Power            | Please select the input power supply in accordance with the specifications in this instruction manual.                                                                                                                                                                   |  |  |
| Air switch       | <ol> <li>When the inverter is under repair or not in use for a long time,<br/>the air switch can isolate the inverter and the power;</li> <li>When there is a input terminal short circuit or low-voltage<br/>fault, the air switch can carry out protection.</li> </ol> |  |  |
| Contactor        | It is convenient to control the inverter power on/off.                                                                                                                                                                                                                   |  |  |
| Fast fuse        | It carries out protection when there is short circuit in the inverter.                                                                                                                                                                                                   |  |  |
| AC reactor       | <ol> <li>To improve the power factor;</li> <li>To lower the inverter harmonics to the grid.</li> </ol>                                                                                                                                                                   |  |  |
| Brake resistance | When the motor is in regenerative braking state, it is used to avoid the DC circuit voltage become too high.                                                                                                                                                             |  |  |

GUIDE

# 4.7 Wiring Specification

| Туре         | Breaker<br>(A) | Input/output cables (copper core cable mm <sup>2</sup> ) | Contactor rated<br>working current (A) |
|--------------|----------------|----------------------------------------------------------|----------------------------------------|
| HF650-0R4-4L | 2.2            | 2.5                                                      | 9                                      |
| HF650-0R7-4L | 4              | 2.5                                                      | 9                                      |
| HF650-1R5-4L | 6              | 2.5                                                      | 9                                      |
| HF650-2R2-4L | 7              | 2.5                                                      | 9                                      |
| HF650-3R7-4L | 12.5           | 2.5                                                      | 12                                     |
| HF650-5R5-4L | 18             | 2.5                                                      | 18                                     |
| HF650-7R5-4L | 22             | 2.5                                                      | 18                                     |
| HF650-011-4L | 29             | 2.5                                                      | 25                                     |
| HF650-015-4L | 39             | 4                                                        | 32                                     |
| HF650-018-4L | 50             | 6                                                        | 50                                     |
| HF650-022-4L | 57             | 10                                                       | 50                                     |
| HF650-030-4L | 80             | 10                                                       | 65                                     |
| HF650-037-4L | 90             | 16                                                       | 80                                     |
| HF650-045-4L | 113            | 16                                                       | 95                                     |
| HF650-055-4L | 138            | 25                                                       | 115                                    |
| HF650-075-4L | 186            | 35                                                       | 150                                    |
| HF650-090-4L | 226            | 50                                                       | 205                                    |
| HF650-110-4L | 258            | 70                                                       | 245                                    |
| HF650-132-4L | 318            | 70                                                       | 300                                    |
| HF650-160-4L | 396            | 95                                                       | 410                                    |
| HF650-185-4L | 438            | 120                                                      | 410                                    |
| HF650-220-4L | 526            | 150                                                      | 475                                    |
| HF650-250-4L | 582            | 70*2                                                     | 500                                    |
| HF650-280-4L | 654            | 70*2                                                     | 550                                    |
| HF650-315-4L | 732            | 70*2                                                     | 620                                    |
| HF650-355-4L | 802            | 95*2                                                     | 700                                    |

 $\label{eq:Please visit the official website for more information: www.guide-edrive.com$ 

**GUIDE** 

| HF650-400-4L | 864 | 95*2 | 800 |
|--------------|-----|------|-----|
| HF650-450-4L | 864 | 95*2 | 800 |

# 4.8 Input/output AC reactor selection

|              |          | Input reactor |            | Outpu   | t reactor   |
|--------------|----------|---------------|------------|---------|-------------|
| Туре         | Capacity | 2% inp        | ut voltage | 1% out  | out voltage |
|              |          | Current       | Inductance | Current | Inductance  |
| HF650-0R4-4L | 0.4 kW   | 2.2A          | 6.4 mH     | 2.2A    | 3.2mH       |
| HF650-0R7-4L | 0.7 kW   | 4A            | 3.5 mH     | 4A      | 1.8 mH      |
| HF650-1R5-4L | 1.5 kW   | 6A            | 2.4 mH     | 6A      | 1.2 mH      |
| HF650-2R2-4L | 2.2 kW   | 7A            | 2.0 mH     | 7A      | 1.0 mH      |
| HF650-3R7-4L | 3.7 kW   | 12A           | 1.1 mH     | 12A     | 0.6 mH      |
| HF650-5R5-4L | 5.5kW    | 19A           | 743uH      | 19A     | 371 uH      |
| HF650-7R5-4L | 7.5kW    | 22A           | 644 uH     | 22A     | 322 uH      |
| HF650-011-4L | 11kW     | 28A           | 493 uH     | 28A     | 247 uH      |
| HF650-015-4L | 15kW     | 38A           | 368 uH     | 38A     | 184 uH      |
| HF650-018-4L | 18.5kW   | 49A           | 283 uH     | 49A     | 141 uH      |
| HF650-022-4L | 22kW     | 57A           | 247 uH     | 57A     | 123 uH      |
| HF650-030-4L | 30kW     | 76A           | 184 uH     | 76A     | 92 uH       |
| HF650-037-4L | 37kW     | 88A           | 159 uH     | 88A     | 79 uH       |
| HF650-045-4L | 45kW     | 113A          | 123 uH     | 113A    | 62 uH       |
| HF650-055-4L | 55kW     | 131A          | 106 uH     | 131A    | 53 uH       |
| HF650-075-4L | 75kW     | 178A          | 78 uH      | 178A    | 39 uH       |
| HF650-090-4L | 90kW     | 227A          | 62 uH      | 227A    | 31 uH       |
| HF650-110-4L | 110kW    | 259A          | 54 uH      | 259A    | 27 uH       |
| HF650-132-4L | 132kW    | 320A          | 44 uH      | 320A    | 22 uH       |
| HF650-160-4L | 160kW    | 398A          | 35 uH      | 398A    | 18 uH       |
| HF650-185-4L | 185kW    | 446A          | 31 uH      | 446A    | 16 uH       |
| HF650-220-4L | 220kW    | 528A          | 26 uH      | 528A    | 13 uH       |
| HF650-250-4L | 250kW    | 573A          | 24 uH      | 573A    | 12 uH       |

Please visit the official website for more information: www.guide-edrive.com

GUIDE -

| HF650-280-4L | 280KW | 657A | 21 uH | 657A | 11 uH |
|--------------|-------|------|-------|------|-------|
| HF650-315-4L | 315kW | 735A | 21 uH | 651A | 11 uH |
| HF650-355-4L | 355kW | 805A | 17 uH | 805A | 9 uH  |
| HF650-400-4L | 400kW | 856A | 16 uH | 856A | 8 uH  |
| HF650-450-4L | 450kW | 856A | 16 uH | 856A | 8 uH  |

# 4.9 Brake resistance selection

|               | Brake resistor       |                       |                     | stor                   | -                      |
|---------------|----------------------|-----------------------|---------------------|------------------------|------------------------|
| Inverter type | Inverter<br>capacity | recommend<br>value(Ω) | minimum<br>value(Ω) | Power<br>(KW)<br>30%Kc | Power<br>(KW)<br>50%Kc |
| HF650-0R4-4L  | 0.4 kW               | 750                   | 115                 | ≥0.2                   | ≥0.3                   |
| HF650-0R7-4L  | 0.7 kW               | 750                   | 115                 | ≥0.2                   | ≥0.35                  |
| HF650-1R5-4L  | 1.5 kW               | 400                   | 100                 | ≥0.5                   | ≥0.7                   |
| HF650-2R2-4L  | 2.2 kW               | 250                   | 78                  | ≥0.8                   | ≥1                     |
| HF650-3R7-4L  | 3.7 kW               | 100                   | 64                  | ≥2.0                   | ≥2.5                   |
| HF650-5R5-4L  | 5.5kW                | 100                   | 40                  | ≥2.0                   | ≥2.5                   |
| HF650-7R5-4L  | 7.5kW                | 75                    | 40                  | ≥3.0                   | ≥3.5                   |
| HF650-011-4L  | 11kW                 | 50                    | 40                  | ≥4.0                   | ≥5.2                   |
| HF650-015-4L  | 15kW                 | 40                    | 32                  | ≥5                     | ≥6.5                   |
| HF650-018-4L  | 18.5kW               | 32                    | 24                  | ≥6                     | ≥8.0                   |
| HF650-022-4L  | 22kW                 | 24                    | 20                  | ≥8                     | ≥11                    |
| HF650-030-4L  | 30kW                 | 22                    | 20                  | ≥10                    | ≥13                    |
| HF650-037-4L  | 37kW                 | 21                    | 20                  | ≥12                    | ≥16                    |
| HF650-045-4L  | 45kW                 | 13                    | 8                   | ≥15                    | ≥20                    |
| HF650-055-4L  | 55kW                 | 10                    | 8                   | ≥20                    | ≥26                    |
| HF650-075-4L  | 75kW                 | 7.5                   | 6                   | ≥26                    | ≥35                    |

Please visit the official website for more information: www.guide-edrive.com

| HF650-090-4L | 90kW  | 6.8 | 3.5 | ≥29 | ≥38 |
|--------------|-------|-----|-----|-----|-----|
| HF650-110-4L | 110kW | 5.1 | 3.5 | ≥38 | ≥50 |
| HF650-132-4L | 132kW | 4.2 | 3.5 | ≥46 | ≥60 |
| HF650-160-4L | 160kW | 3.6 | 2.5 | ≥54 | ≥71 |

Note: 1. Inverter of 185KW and below have built-in braking units, the corresponding 100% brakingtorque;

2. Kc: braking rate, the rate of brakingprocessfor whole motor working process;

3、Choice of Kc: a、elevator of below 20 floor Kc=10%~20%

b、Trolley 、Luffing 、Gantry MechanismKc=30%

c、Hoisting Mechanism Kc=40%~50%

4. According to the practical application, the brake resistor power may be appropriately enlarged.

#### 4.10 Installation instructions conform to EMC requirements

#### (1) EMC common knowledge

GUIDE

EMC (electromagnetic compatibility) is an abbreviation which refers to the ability of the equipment or system that can work properly in its electromagnetic environment without cause unstandable electromagnetic disturbance to anything in that environment. EMC includes two aspects: electromagnetic interference and electromagnetic immunity.

Electromagnetic interference can be divided into two categories according to the transmission route: Conducted interference and radiated interference.

Conducted interference is the interference that transmits along the conductor, all conductors, such as wires, conduction, transmission wires, inductors and capacitors, etc, all of them are the transmission channel of conducted interference.

Radiated interference is the interference that transmits in the form of electromagnetic wave, whose energy is inversely proportional to the square of the transmission distance.

EMI (electromagnetic interference) must have three conditions or essentials: the interference source, transmission channel and sensitive receivers, all three are indispensable. EMC problems can be mainly solved from these three aspects. For the user, the equipment itself as an interference source or receiver is unavoidable, so to solve the EMC problems is mainly from the transmission channel.

Different electrical and electronic equipment, due to their different EMC standards or levels, their EMC abilities are also various.

#### (2) Inverter EMC characteristics

Same as other electrical and electronic devices, the inverter is a source of electromagnetic interference and at the same time also an electromagnetic receiver in a control system. Working principle of the inverter determines that it would produce a certain degree of electromagnetic interference noise. In order to ensure its reliable operation, a certain resistance to electromagnetic interference in an electromagnetic environment should be considered during its design state. When the inverter system is working, its EMC characteristics mainly presents in the following aspects:

- a. Generally the input current is non-sinusoidal that contains a lot of high-order harmonic waves which forms the external electromagnetic interference that will lower the power factor of grid and increase line losses.
- b. The output voltage is high frequency PWM wave, it causes the motor elevated temperature, thus reduces motor life; it also increases the leakage current, so cause line leakage protection device malfunction and generates strong electromagnetic interference, which influences the reliability of other electrical equipment in the same system.
- c. As an electromagnetic receiver, its powerful interference will trigger malfunction or even damage to the inverter which finally affect the normal use of the user.
- d. In the system wiring, the inverter's own interference on its ambient environment supplements its own anti-interference characterisctics. The procedure of reducing its own interference is also the procedure of increasing its anti-interference characterisctics at the same time.
- (3) EMC installation guidance

To ensure the electrical equipment in the same system work reliably with consideration of the inverter EMC characteristics, this chapter introduces EMC installation methods with details from the aspects of noise suppression, field wiring, grounding, leakage current and power filters for on-site installation reference. Only when these five aspects are achieved, EMC will achieve good results.

a. Noise suppression

All inverter control terminals are connected with shielding cables, which grounded the shielding layer to the nearest point at the inverter entrance. The cable clips constitute a 360-degree looping grounding. It is prohibited to twist the shielding layer as braid before grounded with the inverter; this will greatly reduce the shielding effect or even



lost shielding effect.

Cables between inverter and motor (motor line) adopt shielded cables or independent cable trunk, motor lines' shielded layer or one side of the metal casing of cable trunk are grounded with the inverter to the nearest point, while the other side connected to the motor housing. Installation of a noise filter can greatly suppress electromagnetic interference.

b. On-site wiring

Electric power wiring: in different control systems, the power inlet cable is powered independently from the power transformer, generally it adopts four-core cables, where three of which is live wire, and one is ground wire.

Equipment category: generally there are different electrical devices in a same control cabinet, such as inverter, filter, PLC and instrumentation, etc. Their different ability of electromagnetic noise emission and electromagnetic noise withstand require the classification of these devices. The devices can be classified into strong noise devices and sensitive noise devices; the same class devices can be installed in the same area. The distance between different types of devices should be more than 20cm.

c. Grounding

During operation the inverter must be safely and reliably grounded, the impedance of the grounding conductor must be lower than  $0.1\Omega$ . Grounding is not only to guarantee the equipment and personal safety, but also the simplest way to solve EMC problems most effectively with lowest cost, which should be given priority.

Grounding has three categories: special grounding pole, common grounding pole and grounded electrode cascade. Special pole grounding should be used in different control systems, common pole grounding should be used for different devices in a same control system, and grounded electrode cascade should be used for different devices that in the same power supply line.

d. Leakage current

GUIDE

Leakage current includes leakage current between lines and earth leakage current. The cover leakage current must be lower than 3.5mA, and the control terminals leakage current must be lower than 0.25mA. Its size is determined by the size of distributed capacitor during system wiring and the inverter's carrier frequecy. Earth leakage current is the leakage current that flowing through the common grounded electrode, which flows into not only the inverter system but also into other equipment. The leakage current may cause malfunction of leakage circuit breakers, relays, or other devices. Leakage current between lines is the leakage current that flowing through the distributed capacitor of the inverter input and output side. The size of the leakage current is determined by the inverter carrier frequency, motor cable length, and cable cross-sectional area. The higher the carrier frequency, the longer the motor cable, the larger cable cross-sectional area, the greater the leakage current is.

Solutions:

Reduce the carrier frequency can effectively reduce the leakage current. When the motor wire is comparatively long (50m or more), AC reactors should be installed in the inverter output side, when the motor wire is even longer, one reactor should be installed at every certain distance.

e. Noise filter

The noise filter can play a good role in the electromagnetic decoupling, even in the case of working conditions are met, it is recommended to install one by the user.

In fact, there are two kinds of noise filters:

- 1. Noise filter installed at the input side of the inverter: It is used to isolate the inverter from the other equipment.
- 2. Noise filter or isolation transformer installed at the input side of the other equipment: it is used to isolate the other equipment from the inverter



# **5.Operation instructions**

#### 5.1 Operation panel instruction

HF650 series inverter's operation keyboard (also known as operator) is shown as below. It contains F1 key,F2 key, RUN key, STOP key, UP / DOWN key, LOCAL / REMOTE key, arrow keys, LEFT/ RESET key and RIGHT/ENTER key, the user can use these keys to set the parameters of the inverter, monitor the running status, control the motor running and stop and so on.



### 5.2 Key operation

GUID

The key data value is composed of the main menu and the lower menu. If moved from

the upper menu to the lower menu, press ▼key. If moved from lower menu back to the upper menu, press ▲key. You can also increase or decrease the values by the up and down keys. Press ENTER key to confirm a determined data value. Use ◆key when select a desired number position during setting parameters: When the cursor is moved to the far left, it will automatically jump back to the far right. When using the keyboard to run the inverter, press RUN and STOP kyes to start and stop the motor (please first finish setting parameters and shift into local mode), and press LOCAL / REMOTE key to switch between local and remote modes.

## 5.3 Main menu configuration diagram



The main interface contains status bar, monitoring interface, menu and three functions.

The status bar shows the direction of motor  $\$  the speed of motor  $\$  the output current  $\$  Waring|Error.

|                    | Description              |
|--------------------|--------------------------|
| Direction of motor | FWD: forward direction   |
|                    | REV: reverse direction   |
| Speed of motor     | Output frequncy, Unit:Hz |

| Output current | The output current of inverter, Unit: A                                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------|
| warning error  | Without waring and error: N N<br>With warning: W<br>With error: E<br>With warning or error, the letter will<br>blink |

The monitoring interface: one page shows three monitoring parameter, and choose the monitoring parameter by pressing up-down key.

menu :displaying the function of F1 key and F2 key,include "option","menu","esc","enter".

On the main interface, pressing ENTER key, you can quickly enter the given speed interface, and setting the given spped quickly.



Pressing the option to enter the picture shown above. The submenu of option is shown below table.

| option            |               |                                                   |  |  |
|-------------------|---------------|---------------------------------------------------|--|--|
| Number of submenu | submenu       | Description                                       |  |  |
| 1                 | Reference Set | The given speed、torque、<br>torque limit and so on |  |  |

GUID

| 2 | Change Direction | Change the direction of motor<br>when in local mode             |
|---|------------------|-----------------------------------------------------------------|
| 3 | Current Error    | Display the curent error and description of the current error   |
| 4 | Current Warnning | Display the curent waring and description of the current waring |
| 5 | Reset Error      | Resetting the current error,setting the errorcode to zero       |
| 6 | Monitor Setting  | Setting the parameter of monitor interface                      |
| 7 | Firmware Version | Dispaying the software version of controll board and operation  |
| 8 | Menu Language    | choosing the language of menu                                   |



Pressing the menu to enter the picture shown above. The submenu of menu is shown below table.

Please visit the official website for more information: www.guide-edrive.com



| Main menu         |                    |                                                                                                                                                                                                                                         |  |  |
|-------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Number of submenu | submenu            | Description                                                                                                                                                                                                                             |  |  |
| 1                 | Parameter Setting  | Setting the parameter of inve rter                                                                                                                                                                                                      |  |  |
| 2                 | Function Setting   | Be Enable the function                                                                                                                                                                                                                  |  |  |
| 3                 | Fault Record       | Displaying the error record,an<br>d the description of error                                                                                                                                                                            |  |  |
| 4                 | Access Permissions | User authentication.<br>To amend the developer level<br>parameters, higher access a<br>uthority must be obtained.<br>About access authority modifi<br>cation, please contact the Wu<br>han Guide Electric Drive Tec<br>hnology Co.,Ltd. |  |  |
| 5                 | Display Setting    | Setting the date, time, light o<br>f operation                                                                                                                                                                                          |  |  |





# 5.4 《option》 Menu configuration description

## (1) Reference Set

| Mode category | Category         | Unit | descrioption                               |
|---------------|------------------|------|--------------------------------------------|
|               | Speed set        | [Hz] |                                            |
|               |                  | [%]  | 100% is the rated speed of motor           |
|               | Torque set       | [%]  | 100% is the rated torque of motor          |
| Reference Set | Torque limit set | [%]  | 100% is the rated torque of motor          |
|               | AO1 set          | [%]  | 100% is the voltage 10V or current<br>20mA |
|               | AO2 set          | [%]  | 100% is the voltage 10V or current<br>20mA |

(2) Change Direction

Changing the direction of motor.

(3)Current Error

Display the curent error and description of the current error.

(4)Current Warnning

Display the curent waring and description of the current waring.

Please visit the official website for more information: www.guide-edrive.com

(5)Reset Error

Resetting the current error, setting the errorcode to zero.

(6)Monitor Setting

Setting the parameter of monitor interface.

(7)Firmware Version

Dispaying the software version of controll board and operation.

(8)Menu Language

Choosing the language of menu, Chinese or English.

# 5.5 《menu》 Menu configuration description

(1)Parameter Setting

Setting the parameter of inverter.

GUIDF

(2)Function Setting

| Function Setting |                             |                                              |  |  |
|------------------|-----------------------------|----------------------------------------------|--|--|
| Mode type        | Category                    | Function description                         |  |  |
| 1                | MotoTuning I                | Motor static auto-tuning                     |  |  |
| 2                | MotoTuning II               | Motor dynamic auto-tuning                    |  |  |
| 3                | MotoTuning III              | Mechanical moment of inertia<br>auto-tuning  |  |  |
| 4                | DC-Link Tuning              | It is effective only in AFE con trol mode.   |  |  |
| 5                | Shortcut Paras<br>Setting   | Fast setting on common use parameters        |  |  |
| 6                | Parameter<br>Initialization | Parameters are initialized as original ones. |  |  |
| 7                | Delete Fault Records        | Fault clearance mark                         |  |  |

| 8  | System Restart    | Inverter system reset, which equals to re-energization.                                                                                                                                                                               |
|----|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | Backup Parameter  | Back-up all present parameter s.                                                                                                                                                                                                      |
| 10 | Recover Parameter | Back to the backup paramete rs.                                                                                                                                                                                                       |
| 11 | Compare Parameter | Compare the existing and ba<br>ckup parameters and list out<br>the modified parameters (In c<br>ase the backup parameters a<br>re initialized factory setting va<br>lues, only the modified param<br>eter values will be listed out). |



**Parameter backup** can be used to back up all the exsiting parameters of the inverter (including auto-tuning parameters), this feature is used to restore the backup values to the same type of inverter. *Note: Do not switch off the power or disconnect operator during operation!* 

**Parameter restore** can be used to restore the backup parameters, and it is not limited to the same backup inverter, as long as the version is matched. If failures occur, please check whether the version is consistent with correct backup.

# Note: Please operate this function after machine stops and don't switch off the power or disconnect operator during operation! It will cause the inverter reset!

**Parameter comparison:** if the parameters have been successfully backed up this feature can be used to view the modified parameters by pressing the  $\mathbf{\nabla}$ ,  $\mathbf{\Delta}$  keys to display all parameters, press "Enter" to enter for modifying parameters.

# Note: The first step of this function will check all the parameters and compare with the backup values, please do not switch off the power or disconnect the communication!

(3) Fault Record

Displaying the error record, and the description of error.

(4)Access Permissions

User authentication. To amend the developer level parameters, higher access authority must be obtained.

(5) Display Setting

GUIDE

Display setting is used to change the menu language, monitor channel settings, set the LCD contrast settings of the inverter.

# 6. Inverter test run

#### 6.1 Inverter test run sequence

Please perform test run based on the following flow.



Test run flow chart

6

GUIDE

#### Note:

Before perform auto-tuning by operator, make sure to select local from "local / remote" key.

The initial value of the control mode is V / F control (P16.11 = 0). To get better control performance, it is recommended V / F control to perform static auto-tuning.

Vector control is divided into closed loop vector control (P16.11 = 2) and the open-loop vector control (P16.11 = 1). After finising static and dynamic auto-tuning in open-loop vector control mode, if the control mode has shifted into closed loop vector control, then it is no need to redo auto-tuning, in which state it can be directly operated after checking the encoder connection and settings.

#### 6.2 Inverter test run operation

#### 6.2.1 Energization

Before turning on the power, please confirm the following items:

- (1) Whether the power supply voltage is correct?3P AC380-480V 50/60Hz
- (2) Whether the motor output terminals (U, V, W) are acutally connected with the motor?
- (3) Whether the inverter control terminals are acutally connected with wires of other control devices?
- (4) Whether the wires are connected during using the PG encoder card?
- (5) Whether the motor is in no-load state (without connecting to mechanics)?

#### 6.2.2 Display status confirmation

GUIDE

When the power is on, the normal display of the keyboard is shown as below:
| FWD     | 0.00HZ    | 0.00A | N N      |
|---------|-----------|-------|----------|
| Motor s | peed[Hz]: |       | 0.00 Hz  |
| Frequer | ncy[Hz]:  |       | 10.00 Hz |
| Bus vo  | ltage :   |       | 560.60 V |
| Option  | 11:4      | 45    | Menu     |

When a failure occurs, the display is different from above. Below is an example when an undervoltage fault occurs:

| FWD           | 0.00Hz | 0.00A | N E   |
|---------------|--------|-------|-------|
| Error         |        |       |       |
| E105          |        |       |       |
| Under Voltage |        |       |       |
| Quit          | 11:4   | 5 R   | ST Er |

### 6.2.3 Parameter initialization

Parameter values are restored to their default values after parameter initialization, the specific instructions, see Chapter 5.4 function settings.

### 6.2.4 Parameter setting

Parameter setting is used to inveter tet run.

| Function | Namo               | Description           | Setting |
|----------|--------------------|-----------------------|---------|
| code     | Name               | Description           | values  |
|          |                    | [0] Terminal (DI)     |         |
|          |                    | [1] Local Operator    |         |
| P8.0     | RUN_SRC            | [2] Profibus DP       | 1       |
|          |                    | [3] MODBUS            |         |
|          |                    | [4] FREE BLOCK        |         |
|          | STOP mode          | [0] Ramp STOP         | 1       |
| F0.3     |                    | [1] Free Running STOP | I       |
|          | Speed_Input Source | [0] I/O TERMINAL      |         |
|          |                    | [1] AI 1              |         |
| P8.10    |                    | [2] AI 2              | 0       |
|          |                    | [3] LOCAL OPERATOR    | 3       |
|          |                    | [4] Profibus DP       |         |
|          |                    | [5] MODBUS            |         |



|        |                               | [6] FREE BLOCK                                                                                                               |      |
|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|------|
| P8.16  | Accel 1 @time                 | Sets the time to accelerate from 0 to the P8.15.                                                                             | 3    |
| P8.35  | Decel 1 @time                 | Sets the time to decelerate from P8.34 to the 0.                                                                             | 3    |
| P16.0  | Supply Voltage                | 380V                                                                                                                         |      |
| P16.2  | Nominal Power                 | Refer to motor nameplate                                                                                                     |      |
| P16.3  | Nominal Voltage               | Refer to motor nameplate                                                                                                     |      |
| P16.4  | Nominal Current               | Refer to motor nameplate                                                                                                     |      |
| P16.5  | Nominal Frequency             | Refer to motor nameplate                                                                                                     |      |
| P16.6  | Nominal Speed                 | Refer to motor nameplate                                                                                                     |      |
| P16.7  | Number of Poles               | Refer to rated revolution setting, quote the integer of the following calculation result: (120XP16.5/P16.6)                  |      |
| P16.9  | Reference Speed               | Set based on rated revolution (120XP16.5/P16.7)                                                                              |      |
| P16.11 | Control Mode Selection        | <ul> <li>[0] V/F</li> <li>[1] S/L Vector Control</li> <li>[2] CL Vector Control</li> <li>Set based on requirement</li> </ul> |      |
| P16.14 | V/F Curve Pattern             | [0]Linear Curve V/F<br>[1] Multi-point Curve V/F<br>[2] Square Curve V/F                                                     | 0    |
| P16.24 | Max. Frequency                | Sets the maximum frequency(valid only when running in V/F control mode).                                                     | 50Hz |
| P7.0   | Current Limit for motor 1     | 0~300[%]                                                                                                                     | 180% |
| P7.4   | Over Current Trip for motor 1 | 0~300[%]                                                                                                                     | 235% |
| P7.19  | Over Speed Trip [M1]          | 100.0~720.0[%]                                                                                                               | 120% |

### 6.2.5 Motor parameter auto-tuning

GUIDE

It is necessary to perform auto-tuning mode when the motor cable is too long and in the vector control. Please follow the steps below to perform auto-tuning to automatically identify motor parameters.

#### (1) Select the control mode

Setting P16.11 value, it is vector control if select [1] or [2], which demands static and dynamic auto-tuning. It is V / F control if select [0], which demands only static

auto-tuning.

(2) Static auto-tuning

Static auto-tuning in the V / F control mode can also be called as auto-tuning of resistance between the lines, in which the inverter recognizes only the stator resistance values; under static auto-tuning in the vector mode the inverter recognizes the stator and rotor resistance and inductance parameters.

Select static auto-tuning in "Function setting" and press "ENTER" to perform auto-tuning. It displays "Static auto-tuning is in progress" and "Auto-tuning finished" respectively during and after the procedure.

(3) Dynamic auto-tuning

Under dynamic auto-tuning in vector mode, the dynamic auto-tuning optimized parameters identify the parametervalues. Before a dynamic auto-tuning starts, static auto-tuning in vector mode must be completed.

Select dynamic auto-tuning in "Function setting" and press "ENTER" to perform auto-tuning. It displays "Dynamic auto-tuning is in progress" and "Auto-tuning finished" respectively during and after the procedure.

(4) Optimization auto-tuning

After the completion of the dynamic auto-tuning in vector mode, and with motor shafted, it is possible to perform optimization auto-tuning. The motor load can not exceed 50% of the rated load during optimization auto-tuning, which only optimizes the mechanical inertia. After the completion of the dynamic auto-tuning, the mechanical inertia uses the default values, then the vector control can operate normally. If for better control performance, then it is suggested to carry out optimization auto-tuning.

### 6.2.6 Notice before auto-tuning mode

Inverter HF650 series offer parameter auto-tuning function. Correct settings of motor nameplate parameters guarantees accurate parameters auto-tuning. In order to ensure the control performance, please select motors according to the inverter application standards. If the gap between motor power and inverter application standards is too large, the inverter control performance will be significantly decreased.

Please confirm the following four items before the motor auto-tuning begins:

| Check items | Notice |
|-------------|--------|
|-------------|--------|

| Whether the motor shaft is connected to other mechanical equipment?          | Motor will rotate 7.5% of rated speed in dynamic<br>auto-tuning. If the motor is connected to other<br>machinery and equipment, make sure that the<br>load does not exceed 50% of rated load. In the<br>no-load condition, the dynamic auto-tuning can<br>get more accurate results, if the load exceeds<br>50% of rated load, the dynamic auto-tuning may<br>not be successful. |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Whether the motor capacity<br>and the inverter capacity is<br>verydifferent? | When the motor power is much smaller than the inverter power, it may not complete the auto-tuning normally. (the motor power should not be smaller than 1/5 that of the corresponding inverter.)                                                                                                                                                                                 |
| Whether the input motor parameters are correct?                              | Whether parameters of group P16 are consistent<br>with the motor nameplate parameters, such as<br>ratedpower, voltage, current, speed, number of<br>poles, and synchronous speed. A mistake input<br>could lead to failure of the auto-tuning or motor<br>abnormal run.                                                                                                          |
| Whether there are encoders installed on motors?                              | There should be encoders if it adopts closed-loop vector control. If it adopts V/F control or open-loop vector control, it won't be any influence if with or without encoders.                                                                                                                                                                                                   |

### 6.2.7 No-load operation test run

The instructions for motor no-load test run are described as below.

It is necessary to confirm safety around motor and mechanical equipment before run the test, to ensure whether the emergency stop circuits and mechanical safety devices are able to operate correctly. Confirm whether the motor rotation is normal (whether there is abnormal sound and vibration) and check whether the motor acceleration and deceleration is normal.

(1) Turn on the power. The initial screen displays;

- (2) Press the "LOC / REM" key to select LOCAL, the LOCAL indication light is on;
- (3) Press the "ENTER" key to set the parameter set[1]: given frequency .Press the "RUN' key of the operator to run the inverter, the "RUN" indication light is on, and the motor turns forward. (It is suggested the given frequency is 5Hz)
- (4) Check that the motor rotation is in the correct direction and the inverter is without fault;

- (5) If there is no fault in step 4, then increase the frequency command value. Please confirm its responsiveness while changing in each time with 50Hz increments. During each increase of a setting value, please confirm the output current through the operator to ensure that current does not exceed the rated motor current.
- (6) After the confirmation is completed, press the "STOP" key to stop the run.

### 6.2.8 Test run with load connected

The method of motor test run with load connected will be described below.

Following attentions should be paid when connecting to mechanical system:

- (1) Ensure the safety around electrical equipment and machinery;
- (2) Ensure that the motor stops completely;
- (3) Connect the motor to the mechanical system;
- (4) Confirm whether the mounted screws are tight, and the motor shaft and the mechanical systems are securely fixed;
- (5) Confirm whether the emergency stop circuit and mechanical side safety device can act correctly;
- (6) To prevent malfunction, please be ready at any time to press the "STOP" key.

Please confirm the following items during running:

- Whether the mechanical action is in the correct direction (whether the direction of motor rotation is correct);
- (2) Whether the acceleration and deceleration of the motor is normal.

After connecting the motor to the mechanical system, perform test run with load by using the same steps as with no-load operation.

- (1) Confirm whether the output current is too large;
- (2) Change the frequency command and rotation direction to confirm whether there is abnormal noise and vibration.

#### 6.2.9 Parameter save

Select the "parameter backup" in "Function Setting", and copy the inverter parameter values to the memory zone of the operator. In case of replacement of the main control board due to inverter failure, just copy the data that recorded in the operator to a new



control board, then the operation can be restored. (The software version must be consistent with the previous one in the control board when restoring parameters; otherwise it is unable to successfully restore parameters).



# 7. Inverter parameter setting instruction

| Par.NO | Parameter Name   | Description                              | Range | Default | Ref. |
|--------|------------------|------------------------------------------|-------|---------|------|
| P0.0   | Ini-OPTION       | [0]DEFAULT SET<br>[1]LATEST SAVE         | 0~1   | 0       |      |
| P0.1   | Initialize POWER | The power of inverter                    | 0~26  | 14      |      |
| P0.3   | Initialize FREQ  | [0] 50Hz<br>[1] 60Hz                     | 0~1   | 0       |      |
| P0.4   | Password         | The password for innitializing parameter |       |         |      |

### 7.1Initializing paramerter control P0

## 7.2 Parallel inverter and panel observation configuration P2

| Par.NO | Parameter Name                                   | Description                                                                                                                                                                               | Range    | Default | Ref.    |
|--------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|
| P2.0   | Parallel Inverter<br>Mode                        | <ul> <li>[0] STAND ALONE: used as a single inverter;</li> <li>[1] MASTER: used as the master inverter of parallel.</li> <li>[2] SLAVE: used as the slave inverter of parallel.</li> </ul> | 0~2      | 0       | See 8.1 |
| P2.1   | Motor switch<br>setting                          | Selects motor switch source<br>[0]Digital input: switched by<br>terminal control;<br>[1]Profibus DP: switched by<br>communication control。                                                | 0~1      | 0       |         |
| P2.2   | LANGUAGE                                         | [0] CHINESE<br>[1] ENGLISH                                                                                                                                                                | 0~1      | 0       |         |
| P2.3   | Number of     Sets the number of parallel slave. |                                                                                                                                                                                           | 0~5      | 1       |         |
| P2.33  | LCD Back Light<br>Time                           | Set the time of LCD back light                                                                                                                                                            | 1~100min | 10      |         |

### 7.3 Digital input set of terminals P3

| Par.NO Parameter Name Descr | iption Range | Default | Ref. |
|-----------------------------|--------------|---------|------|
|-----------------------------|--------------|---------|------|

| P3.0  | DI1               | Multifunctional input terminal | 0~32 | 1 |  |
|-------|-------------------|--------------------------------|------|---|--|
| P3.1  | DI2               | Multifunctional input terminal | 0~32 | 2 |  |
| P3.2  | DI3               | Multifunctional input terminal | 0~32 | 5 |  |
| P3.3  | DI4               | Multifunctional input terminal | 0~32 | 6 |  |
| P3.4  | DI5               | Multifunctional input terminal | 0~32 | 7 |  |
| P3.5  | DI6               | Multifunctional input terminal | 0~32 | 8 |  |
| P3.6  | DI7               | Multifunctional input terminal | 0~32 | 0 |  |
| P3.7  | DI8               | Multifunctional input terminal | 0~32 | 0 |  |
| P3.12 | Power-on auto run | [0]prohibit; [1]enable         | 0~1  | 0 |  |
|       | control           |                                |      |   |  |

# Functions of DI terminals:

| Value | Function                                    | Description                                                                       |  |
|-------|---------------------------------------------|-----------------------------------------------------------------------------------|--|
| 0     | DISABLED                                    | Set 0 for reserved terminals to avoid malfunction.                                |  |
| 1     | RUN                                         | The terminal is used to control forward or reverse RUN of                         |  |
| 2     | RUN @REVERSE                                | the AC inverter.                                                                  |  |
| 3     | INVERTER ENABLE<br>(High level valid)       | The terminal is valid when being connected with COM.                              |  |
| 4     | INVERTER ENABLE @NC<br>(Low level valid)    | The terminal is valid when being disconnected from COM.                           |  |
|       |                                             | The terminal is used for fault reset function, the same as                        |  |
| 5     | FAULT RESET                                 | the function of                                                                   |  |
|       |                                             | reset is implemented by this function.                                            |  |
| 6     | M_STEP1 (Bit 0)                             |                                                                                   |  |
| 7     | M_STEP2 (Bit 1)                             |                                                                                   |  |
| 8     | M_STEP3 (Bit 2)                             | Mutiple steps instruct input terminal (see 8.2)                                   |  |
| 9     | M_STEP4 (Bit 3)                             |                                                                                   |  |
| 10    | Hook mode                                   | The function is available when the terminal becomes ON.(see8.10)                  |  |
| 11    | DIRECTION SWITCH                            | The terminal is used to change the moving direction when the terminal becomes ON. |  |
| 12    | REMOTE_EMERGENCY<br>(High level valid)      | It is valid when input terminal is high level.                                    |  |
| 13    | LOCAL_EMERGENCY<br>@NC<br>(Low level valid) | It is valid when input terminal is low level.                                     |  |

7



| 14    | REMOTE_EMERGENCY<br>(High level valid)       | It is valid when input terminal is high level.                                                                                                                                 |
|-------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | REMOTE_EMERGENCY<br>@NC<br>(Low level valid) | It is valid when input terminal is low level.                                                                                                                                  |
| 16    | PARLLEL_MODE<br>SLAVE_RDY                    | If the slave is ready for RUN,the terminal becomes ON.                                                                                                                         |
| 17    | MOTOR_SEL [bit0]                             | Motor selection bit1 and motor selection bit2 combine to                                                                                                                       |
| 18    | MOTOR_SEL [bit1]                             | motor selection signals, of which 00 indicates the target<br>motor 1, 01 indicates the target motor 2, 10 indicates the<br>target motor 3 and 11 indicates the target motor 4. |
| 19    | AFE DIODE ONLY                               | When this terminal becomes ON ,the IGBT cannot work when in AFE control mode.                                                                                                  |
| 20    | LINE_SW_STATUS                               | Perform main contactor pull confirmation when in AFE control mode.                                                                                                             |
| 21    | FUNC 21                                      | Reserved                                                                                                                                                                       |
| 22    | BRAKE_SW_STATUS                              | (See 8.2)                                                                                                                                                                      |
| 23    | ANIT Grab Open                               | (see 8.10)                                                                                                                                                                     |
| 24    | FREE_RUN STOP                                | The function is available when the terminal becomes ON.                                                                                                                        |
| 25    | FUNC 25                                      | Reserved                                                                                                                                                                       |
| 26    | TRQ_DYN_CTRL                                 | When this terminal becomes ON, it runs in the torque control mode, otherwise it runs in the speed control mode.                                                                |
| 27    | FUNC 27                                      | Reserved                                                                                                                                                                       |
| 28    | TORQUE_ZERO                                  | When this terminal becomes ON,the torque setting is zero.                                                                                                                      |
| 29~64 | FUNC 29~ FUNC 64                             | Reserved                                                                                                                                                                       |

# 7.4 Digital Output set of terminals P4

| Par.NO | Parameter Name | Description                        | Range | Default | Ref.<br>Chapter |
|--------|----------------|------------------------------------|-------|---------|-----------------|
| P4.0   | DO1            | Multifunctional output<br>terminal | 0~64  | 0       |                 |
| P4.1   | DO2            | Multifunctional output<br>terminal | 0~64  | 0       |                 |
| P4.2   | DO3            | Multifunctional output<br>terminal | 0~64  | 0       |                 |
| P4.3   | DO4            | Multifunctional output<br>terminal | 0~64  | 0       |                 |

7

| P4.4  | DO5            | Multifunctional output<br>terminal | 0~64  | 0 |  |
|-------|----------------|------------------------------------|-------|---|--|
| P4.16 | DO_FREE_BLOCK1 | The setting of free function block | 0~500 | 0 |  |
| P4.17 | DO_FREE_BLOCK2 | The setting of free function block | 0~500 | 0 |  |
| P4.18 | DO_FREE_BLOCK3 | The setting of free function block | 0~500 | 0 |  |
| P4.19 | DO_FREE_BLOCK4 | The setting of free function block | 0~500 | 0 |  |

Multi-function switch output terminal functions as follows:

| Value | Function          | Description                                                                         |
|-------|-------------------|-------------------------------------------------------------------------------------|
| 0     | DISABLED          | The terminal has no function.                                                       |
| 1     | RUN               | When the AC inverter is running,the terminal becomes ON. (see 8.3)                  |
| 2     | FAULT             | When the AC inverter stops due to a fault, the terminal becomes ON.                 |
| 3     | MOTOR BRAKE       | When the motor brake release conditions are met, the terminal becomes ON. (see 8.3) |
| 4     | RUN @REQUEST      | When the run command has been entered, the terminal becomes ON.                     |
| 5     | INVERTER<br>READY | If the AC inverter is ready for RUN, the terminal becomes ON.                       |
| 6     | M_STEP0           |                                                                                     |
| 7     | M_STEP1           | [6] $\sim$ [9]When the multi-speed command has been entered,the                     |
| 8     | M_STEP2           | terminal becomes ON.                                                                |
| 9     | M_STEP3           |                                                                                     |
| 10    | FUNC 10           | Reserved                                                                            |
| 11    | DIRECTION         | When the direction command has been entered, the terminal becomes ON.               |
| 12    | WARNING           | If a fault occurs on the AC inverter, the terminal becomes ON.                      |
| 13    | WARNING @OT       | If the motor overheat fault occurs on the AC inverter, the terminal becomes ON.     |
| 14    | WARNING @OL       | If the motor overload fault occurs on the AC inverter, the terminal becomes ON.     |
| 15    | WARNING @OS       | If the motor overspeed fault occurs on the AC inverter, the terminal becomes ON.    |



| 16    | FUNC_16                   | Reserved                                                                                  |
|-------|---------------------------|-------------------------------------------------------------------------------------------|
| 17    | MOTION CTRL 0             | When motor 1 control mode has been selected, the terminal becomes ON.                     |
| 18    | MOTION CTRL 1             | When motor 2 control mode has been selected, the terminal becomes ON.                     |
| 19    | MOTION CTRL 2             | When motor 3 control mode has been selected, the terminal becomes ON.                     |
| 20    | MOTION CTRL 3             | When motor 4 control mode has been selected, the terminal becomes ON.                     |
| 21    | FUNC_21                   | Reserved                                                                                  |
| 22    | LOW SPEED                 | When the inverter output frequency is less than the speed limit, the terminal becomes ON. |
| 23    | HIGH SPEED                | When the inverter output frequency is less than the speed limit, the terminal becomes ON. |
| 24~31 | FUNC_24 $\sim$<br>FUNC_31 | Reserved                                                                                  |
| 32    | SOFT_CHARGING             | For AFE control mode.                                                                     |
| 33~48 | FUNC_33~<br>FUNC_48       | Reserved                                                                                  |
| 49    | PROFIBUS<br>FUNCTION 1    | The status of this terminal is determined by the profibus function 1.                     |
| 50    | PROFIBUS<br>FUNCTION 2    | The status of this terminal is determined by the profibus function 2.                     |
| 51    | PROFIBUS<br>FUNCTION 3    | The status of this terminal is determined by the profibus function 3.                     |
| 52    | PROFIBUS<br>FUNCTION 4    | The status of this terminal is determined by the profibus function 4.                     |
| 53    | PROFIBUS<br>FUNCTION 5    | The status of this terminal is determined by the profibus function 5.                     |
| 54~56 | FUNC_54 $\sim$<br>FUNC_56 | Reserved                                                                                  |
| 57    | LOCAL<br>FUNCTION 1       | The status of this terminal is determined by the local function 1.                        |
| 58    | LOCAL<br>FUNCTION 2       | The status of this terminal is determined by the localfunction 2.                         |
| 59    | LOCAL<br>FUNCTION 3       | The status of this terminal is determined by the localfunction 3.                         |
| 60    | LOCAL<br>FUNCTION 4       | The status of this terminal is determined by the localfunction 4.                         |
| 61    | FREE BLOCK 1              | The status of this terminal is determined by the free function block 1.                   |
| 62    | FREE BLOCK 2              | The status of this terminal is determined by the free function                            |



|    |              | block 2.                                                       |
|----|--------------|----------------------------------------------------------------|
| 00 |              | The status of this terminal is determined by the free function |
| 63 | FREE BLOCK 3 | block 3.                                                       |
|    |              | The status of this terminal is determined by the free function |
| 64 | FREE BLOCK 4 | block 4.                                                       |

# 7.5 Analog input set of terminals P5

| Par.N | Parameter Name        | Description                                                                                                                                                                          | Range                | Default        | Ref.    |
|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|---------|
| P5.0  | AI1 @TYPE             | [0] AI Disabled<br>[1]0~+10V<br>[2]-10~+10V<br>[3]0~20mA                                                                                                                             | 0~3                  | 1              |         |
| P5.1  | Al1@Filtering<br>Time | Sets the filter time constant for<br>AI1.The value becomes more<br>stable the longer the time<br>programmed,but it becomes<br>less responsive to rapidly<br>changing analog signals. | 0.0∼1000.0<br>[ms]   | 25.0<br>[ms]   |         |
| P5.2  | AI1@OFFSET_V          | The voltage offset of AI1.                                                                                                                                                           | -10.00~10.00<br>[V]  | 0.000<br>[V]   | See 8.4 |
| P5.3  | AI1 @OFFSET_I         | The current offset of AI1.                                                                                                                                                           | -20.00~20.00<br>[mA] | 0.000<br>[mA]  | See 8.4 |
| P5.4  | AI1@MIN_V             | The minimum voltage of AI1.                                                                                                                                                          | -10.00~10.00<br>[V]  | 0.000<br>[V]   | See 8.4 |
| P5.5  | AI1@MIN_I             | The minimum current of AI1.                                                                                                                                                          | 0.00~20.00<br>[mA]   | 0.000<br>[mA]  | See 8.4 |
| P5.6  | AI1@MIN               | The minimum setting value of Al1.                                                                                                                                                    | -300.0~300.0<br>[%]  | 0.0<br>[%]     | See 8.4 |
| P5.7  | AI1@MAX_V             | The maximum voltage of AI1.                                                                                                                                                          | -10.00~10.00<br>[V]  | 10.000<br>[V]  | See 8.4 |
| P5.8  | AI1@MAX_I             | The maximum current of AI1.                                                                                                                                                          | 0.00~20.00<br>[mA]   | 20.000<br>[mA] | See 8.4 |
| P5.9  | AI1@MAX               | The maximum setting value of Al1.                                                                                                                                                    | -300.0~300.0<br>[%]  | 100.0<br>[%]   | See 8.4 |
| P5.18 | AI2@TYPE              | [0] AI Disabled<br>[1]0∼+10V<br>[2]-10∼+10V<br>[3]0∼20mA                                                                                                                             | 0~3                  | 3              |         |





|                     |               | Sets the filter time constant for |              |        |  |
|---------------------|---------------|-----------------------------------|--------------|--------|--|
|                     |               | Al2.The value becomes more        |              |        |  |
|                     | Al2@Filtering | stable the longer the time        | 0.0~1000.0   | 25.0   |  |
| P5.19               | Time          | programmed,but it becomes         | [ms]         | [ms]   |  |
|                     |               | less responsive to rapidly        |              |        |  |
|                     |               | changing analog signals.          |              |        |  |
| DE 20               |               | The voltage offset of AI2         | -10.00~10.00 | 0.000  |  |
| P5.20               |               | The voltage offset of Alz.        | [V]          | [V]    |  |
| DE 01               |               | The current effect of AI2         | -20.00~20.00 | 0.000  |  |
| P5.21 AI2 @OFFSET_T |               | [mA]                              | [mA]         |        |  |
| DC 00               |               | The minimum voltage of AI2        | -10.00~10.00 | 0.000  |  |
| P3.22               | AIZ@IVIIN_V   | The minimum voltage of Alz.       | [V]          | [V]    |  |
| DE 22               |               | The minimum current of AI2        | 0.00~20.00   | 0.000  |  |
| P5.23               | AIZ@MIN_I     |                                   | [mA]         | [mA]   |  |
| DE 04               |               | The minimum setting value of      | -300.0~300.0 | 0.0    |  |
| P5.24               |               | AI2.                              | [%]          | [%]    |  |
|                     |               | The maximum voltage of AI2        | -10.00~10.00 | 10.000 |  |
| P5.25               |               | The maximum voltage of Alz.       | [V]          | [V]    |  |
| D5 26               |               | The maximum current of AI2        | 0.00~20.00   | 20.000 |  |
| P0.20               |               |                                   | [mA]         | [mA]   |  |
|                     |               | The maximum setting value of      | -300.0~300.0 | 100.0  |  |
| P5.27               |               | AI2.                              | [%]          | [%]    |  |

# 7.6 Analog output set of terminals P6

| Par.NO | Parameter Name         | Description                                       | Range                   | Default      | Ref.    |
|--------|------------------------|---------------------------------------------------|-------------------------|--------------|---------|
| P6.0   | AO1 @Output            | See Table 7.1                                     | 0~14                    | 2            |         |
| P6.1   | AO1<br>@FREE_BLOCK     | The analog output of free function block.         | 0~1000                  | 0            | See 8.5 |
| P6.2   | AO1 @Minimum           | The minimum output value of AO1.                  | -300.0~<br>300.0<br>[%] | 0.0<br>[%]   | See 8.5 |
| P6.3   | AO1 @Maximum           | The maximum output value of AO1.                  | -300.0~<br>300.0<br>[%] | 100.0<br>[%] | See 8.5 |
| P6.4   | AO1 @Min_Out<br>[mA,V] | The minimum output voltage/current signal of AO1. | 0.0~100.0<br>[%]        | 0.0<br>[%]   | See 8.5 |
| P6.5   | AO1 @Max_Out<br>[mA,V] | The maximum output voltage/current signal of AO1. | 0.0~100.0<br>[%]        | 100.0<br>[%] | See 8.5 |



| P6.6  | AO1 @Offset Adj.       | The adjust offset of AO1.                                                                                                                                                            | -100.00~<br>100.00<br>[%] | 0.00<br>[%]  |  |
|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|--|
| P6.7  | AO1 @Fixed<br>Output   | Sets the fixed output of<br>AO1.(When P6.0 set to [13],this<br>value is valid.)                                                                                                      | 0.0~100.0<br>[%]          | 0.0<br>[%]   |  |
| P6.8  | AO1 Filter Time        | Sets the filter time constant for<br>AO1.The value becomes more<br>stable the longer the time<br>programmed,but it becomes less<br>responsive to rapidly changing<br>analog signals. | 0.0~1000.0<br>[ms]        | 10.0<br>[ms] |  |
| P6.14 | AO2 @Output            | See table 7.1                                                                                                                                                                        | 0~14                      | 4            |  |
| P6.15 | AO2<br>@FREE_BLOCK     | The analog output of free function block.                                                                                                                                            | 0~1000                    | 0            |  |
| P6.16 | AO2 @Minimum           | The minimum output value of AO2.                                                                                                                                                     | -300.0~<br>300.0<br>[%]   | 0.0<br>[%]   |  |
| P6.17 | AO2 @Maximum           | The maximum output value of AO2.                                                                                                                                                     | -300.0~<br>300.0<br>[%]   | 100.0<br>[%] |  |
| P6.18 | AO2 @Min_Out<br>[mA,V] | The minimum output voltage/current signal of AO2.                                                                                                                                    | 0.0~100.0<br>[%]          | 0.0<br>[%]   |  |
| P6.19 | AO2 @Max_Out<br>[mA,V] | The maximum output voltage/current signal of AO2.                                                                                                                                    | 0.0~100.0<br>[%]          | 100.0<br>[%] |  |
| P6.20 | AO2 @Offset Adj.       | The adjust offset of AO2.                                                                                                                                                            | -100.00~<br>100.00<br>[%] | 0.00<br>[%]  |  |
| P6.21 | AO2 @Fixed<br>Output   | Sets the fixed output of<br>AO2.(When P6.14 set to [13],this<br>value is valid.)                                                                                                     | 0.0~100.0<br>[%]          | 0.0<br>[%]   |  |
| P6.22 | AO2 Filter Time        | Sets the filter time constant for<br>AO2.The value becomes more<br>stable the longer the time<br>programmed,but it becomes less<br>responsive to rapidly changing<br>analog signals. | 0.0~1000.0<br>[ms]        | 10.0<br>[ms] |  |

Table 7.1: Description of AO

| Value | Function  | Description                         |
|-------|-----------|-------------------------------------|
| 0     | Frequency | Inverter output frequency(unsigned) |



| 1  | Frequency 2     | Inverter output frequency (signed)            |
|----|-----------------|-----------------------------------------------|
| 2  | Motor Speed     | Motor speed(unsigned)                         |
| 3  | Motor Speed 2   | Motor speed(signed)                           |
| 4  | Output Current  | Output Current                                |
| 5  | Motor Torque    | Motor Torque(unsigned)                        |
| 6  | Motor Torque 2  | Motor Torque(signed)                          |
| 7  | Motor Load      | Motor Load                                    |
| 8  | DC-link Voltage | DC-link Voltage (%)                           |
| 9  | Output Power    | Output Power                                  |
| 10 | Output Voltage  | Output Voltage                                |
|    |                 | The temperature of the inverter (The output   |
| 11 | Temperature     | value is a percentage relative to the maximum |
|    |                 | temperature 150℃)                             |
| 12 | PROFIBUS Set    | Determined by Profibus                        |
| 13 | Fixed Output    | Determined by P6.7 or P6.21.                  |
| 14 | Local Set       | Determined by the monitoring software.        |
|    |                 |                                               |

## 7.7 Protection setting P7

| Par.NO | Parameter Name Description         |                                                  | Range            | Default      | Ref.    |
|--------|------------------------------------|--------------------------------------------------|------------------|--------------|---------|
| P7.0   | Current Limit                      | Sets the current limit for motor 1               | 0.0~300.0<br>[%] | 180.0<br>[%] | See 8.6 |
| P7.1   | Current Limit [M2]                 | Sets the current limit for motor 2.              | 0.0~300.0<br>[%] | 180.0<br>[%] | See 8.6 |
| P7.2   | Current Limit [M3]                 | Sets the current limit for motor 3.              | 0.0~300.0<br>[%] | 180.0<br>[%] | See 8.6 |
| P7.3   | Current Limit [M4]                 | Sets the current limit for motor 4.              | 0.0~300.0<br>[%] | 180.0<br>[%] | See 8.6 |
| P7.4   | Over Current Trip                  | Sets the over current trip for motor 1.          | 0.0~300.0<br>[%] | 235.0<br>[%] | See 8.6 |
| P7.5   | Over Current Trip<br>[M2]          | Sets the over current trip for motor 2.          | 0.0~300.0<br>[%] | 235.0<br>[%] | See 8.6 |
| P7.6   | Over Current Trip<br>[M3]          | Sets the over current trip for motor 3.          | 0.0~300.0<br>[%] | 235.0<br>[%] | See 8.6 |
| P7.7   | Over Current Trip<br>[M4]          | Sets the over current trip for motor 4.          | 0.0~300.0<br>[%] | 235.0<br>[%] | See 8.6 |
| P7.8   | Zero-Sequence<br>Current Trip      | Sets the zero-sequence current trip for motor 1. | 0.0~100.0<br>[%] | 20.0<br>[%]  | See 8.6 |
| P7.9   | Zero-Sequence<br>Current Trip [M2] | Sets the zero-sequence current trip for motor 2. | 0.0~100.0<br>[%] | 20.0<br>[%]  | See 8.6 |
| P7.10  | Zero-Sequence<br>Current Trip [M3] | Sets the zero-sequence current trip for motor 3. | 0.0~100.0<br>[%] | 20.0<br>[%]  | See 8.6 |

Please visit the official website for more information: www.guide-edrive.com



| D7 44  | Zero-Sequence        | Sets the zero-sequence        | 0.0~100.0        | 20.0  |         |
|--------|----------------------|-------------------------------|------------------|-------|---------|
| P7.11  | Current Trip [M4]    | current trip for motor 4.     | [%]              | [%]   | See 8.0 |
| D7 12  | Over Link-Voltage    | Sets the over link-voltage    | 600~820          | 800   | Soo 8 6 |
| F7.12  | Trip                 | trip.                         | [V]              | [V]   | 366 0.0 |
| P7 13  | Under Link-Voltage   | Sets the under link-voltage   | 300~500          | 350   | See 8.6 |
| 17.15  | Trip                 | trip.                         | [V]              | [V]   | 000 0.0 |
| P7 14  | Over-Temperature     | Sets the over-temperature     | 60.0~100.0       | 87.5  | See 8.6 |
| 1 7.14 | Trip                 | Trip.                         | [°C]             | [°C]  | 000 0.0 |
| P7 15  | Over-Temperature     | Sets the over-temperature     | 50.0~100.0       | 80.0  | See 8.6 |
|        | Warning              | warning.                      | [°C]             | [°C]  | 000 0.0 |
| P7 19  | Over Speed Trip [M1] | Sets the over speed trip for  | 100.0~720.0      | 120.0 | See 8.6 |
|        |                      | motor 1.                      | [%]              | [%]   |         |
| P7.20  | Over Speed Trip [M2] | Sets the over speed trip for  | 100.0~720.0      | 120.0 | See 8.6 |
|        |                      | motor 2.                      | [%]              | [%]   |         |
| P7.21  | Over Speed Trip [M3] | Sets the over speed trip for  | 100.0~720.0      | 120.0 | See 8.6 |
|        |                      | motor 3.                      | [%]              | [%]   |         |
| P7.22  | Over Speed Trip [M4] | Sets the over speed trip for  | 100.0~720.0      | 120.0 | See 8.6 |
|        |                      | motor 4.                      | [%]              | [%]   |         |
| P7.23  | SLVC Fail Time[M1]   | Sets SLVC fail time for motor | 0.00~3.00        | 0.50  | See 8.6 |
|        |                      | 1                             | [s]              | [s]   |         |
| P7.24  | SLVC Fail Time[M2]   | Sets SLVC fail time for motor | 0.00~3.00        | 0.50  | See 8.6 |
| F7.24  |                      | 2                             | [s]              | [s]   |         |
| P7.25  | SLVC Fail Time[M3]   | Sets SLVC fail time for motor | 0.00~3.00        | 0.50  | See 8.6 |
|        |                      | 3                             | [s]              | [s]   |         |
| P7.26  | SLVC Fail Time [M4]  | Sets SLVC fail time for motor | 0.00~3.00        | 0.50  | See 8.6 |
|        |                      | 4                             | [s]              | [s]   |         |
| P7.27  | Motor Stall          | Sets motor stall protection   | 0.00~3.00        | 2.00  |         |
|        | Protection Time[M1]  | timetor motor 1               | [s]              | [s]   |         |
| P7.28  | Motor Stall          | Sets motor stall protection   | $0.00 \sim 3.00$ | 2.00  |         |
|        |                      | timetor motor2                | [s]              |       |         |
| P7.29  |                      | Sets motor stall protection   | 0.00~3.00        | 2.00  |         |
|        |                      | timetor motor3                |                  |       |         |
| P7.30  | Motor Stall          | Sets motor stall protection   | 0.00~3.00        | 2.00  |         |
|        |                      | timetor motor4                |                  |       |         |
| P7.31  | Speed Abnormal       | Sets abnormal speed           | 0.0~100.0        | 25.0  |         |
|        | Range                |                               | [%]              | [%]   |         |
| D7 00  | Speed Abnormal       | Sets abnormal speed           | 0.00~5.00        | 1     |         |
| P7.32  | Inspection Time      | protection inspection         | [s]              | [s]   |         |
|        |                      |                               | 0.0. 1000.0      | 200.0 |         |
| P7.33  |                      | Sets Auto-Tuning fall         | 0.0~1000.0       | 300.0 |         |
|        |                      |                               |                  | [S]   |         |
| P7.47  | Continuous Current   | Sets allowed long time        | 0.0~300.0        | 100.0 | See 8.6 |
| 1      |                      | operational current value     | %                | [%]   |         |

| P7.48 | Over-loaded Current                        | Sets the over-loaded current 1                | 0.0~300.0<br>[%]   | 150.0<br>[%] | See 8.6 |
|-------|--------------------------------------------|-----------------------------------------------|--------------------|--------------|---------|
| P7.49 | OL 1 Time                                  | Sets allowed time of<br>over-loaded current 1 | 0.00~60.00<br>[s]  | 60.00<br>[s] | See 8.6 |
| P7.50 | Over-loaded Current                        | Sets the over-loaded current 2                | 0.0~300.0<br>[%]   | 200.0<br>[%] | See 8.6 |
| P7.51 | OL 2 Time                                  | Sets allowed time of over-loaded current 2    | 0.00~5.00<br>[s]   | 5.00<br>[s]  | See 8.6 |
| P7.55 | Lack of Input Phase<br>Protection          | [0] Disabled<br>[1] Enabled                   | 0~1                | 0            |         |
| P7.56 | Lack of Input Phase<br>@Voltage Dip        |                                               | 0.0~200.0<br>[%]   | 120.0<br>[%] |         |
| P7.57 | Lack of Input Phase<br>@Detection Time     |                                               | 0.0~12.0<br>[s]    | 5<br>[s]     |         |
| P7.59 | Lack of Output<br>Phase Protection         | [0] Disabled<br>[1] Enabled                   | 0~1                | 1            |         |
| P7.60 | Lack of Output<br>Phase @Detection<br>Time |                                               | 0.10~3.00<br>[s]   | 0.30<br>[s]  |         |
| P7.64 | Dynamic Braking<br>Unit                    | [0] Disabled<br>[1] Enabled                   | 0~1                | 0            | See 8.6 |
| P7.65 | DB_START Voltage                           | Sets the DB_start voltage.                    | -25~100<br>[V]     | 0<br>[V]     | See 8.6 |
| P7.66 | DB Full_Action<br>Voltage                  | Sets the DB full_action voltage.              | -25~100<br>[V]     | 0<br>[V]     | See 8.6 |
| P7.69 | OV SUPRESSION                              | [0] Disabled<br>[1] Enabled                   | 0~1                | 0            | See 8.6 |
| P7.70 | OV SUPRESSION<br>@LIMIT                    | Sets the over suppression limit.              | -25~100<br>[V]     | 0<br>[V]     | See 8.6 |
| P7.71 | OV SUPRESSION 1                            | [0] Disabled<br>[1] Enabled                   | 0~1                | 0            | See 8.6 |
| P7.73 | UV SUPRESSION                              | [0] Disabled<br>[1] Enabled                   | 0~1                | 0            |         |
| P7.74 | UV SUPRESSION<br>@LIMIT                    |                                               | 300~500<br>[V]     | 460<br>[V]   |         |
| P7.75 | UV SUPRESSION<br>@Action Gain              |                                               | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P7.76 | Motion Recovery<br>Time after UV           |                                               | 0.00~300.00<br>[s] | 1.00<br>[s]  |         |
| P7.77 | UV SUPRESSION<br>@Min_Speed                |                                               | 0.0~200.0<br>[%]   | 15.0<br>[%]  |         |
| P7.94 | Pwr _Motion Option                         | [0]Run control<br>[1]Busbar voltage control   | 0~1                | 1            |         |

7

|       | Percharge Fail Time | Sets percharge fail time in | 0.0~3000.0  | 15.0 |  |
|-------|---------------------|-----------------------------|-------------|------|--|
| F7.95 |                     | AFE control mode            | [s]         | [s]  |  |
|       | Pwr_SW Off-Delay    | Sets the delay time of      | 0.00~300.00 | 0.00 |  |
| P7.96 |                     | Pwr_SW Off.                 | [s]         | [s]  |  |

## 7.8 Motion Control 1 P8

| Par.NO | Parameter Name               | Description                                                                                                                                                           | Range                          | Default      | Ref.    |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|---------|
| P8.0   | RUN_SRC                      | <ul> <li>[0] Terminal (DI)</li> <li>[1] Local Operator</li> <li>[2] PROFIBUS</li> <li>[3] MODBUS</li> <li>[4] FREE BLOCK</li> </ul>                                   | 0~4                            | 0            |         |
| P8.1   | RUN_SRC<br>@FREE_BLOCK       | To issue the Run command via the FREE_BLOCK.                                                                                                                          |                                |              |         |
| P8.2   | DIR_SRC<br>@FREE_BLOCK       | To issue the Direction command via the FREE_BLOCK.                                                                                                                    |                                |              |         |
| P8.3   | STOP mode                    | [0] Ramp STOP<br>[1] Free Running STOP                                                                                                                                | 0~1                            | 0            | See 8.7 |
| P8.6   | START delay                  | Sets the start delay time.                                                                                                                                            | 0.00~300.00<br>[s]             | 0.00<br>[s]  | See 8.7 |
| P8.7   | STOP_HOLD<br>Time            | Sets the stop hold time.                                                                                                                                              | 0.00~300.00<br>[s]             | 0.00<br>[s]  | See 8.7 |
| P8.10  | Speed_Input<br>Source        | <ul> <li>[0] TERMINAL</li> <li>[1] AI 1</li> <li>[2] AI 2</li> <li>[3] LOCAL OPERATOR</li> <li>[4] Profibus DP</li> <li>[5] MODBUS</li> <li>[6] FREE BLOCK</li> </ul> | 0~6                            | 0            |         |
| P8.11  | Speed_Src<br>@FREE_BLOCK     | To issue the speed given free function block source                                                                                                                   |                                |              |         |
| P8.13  | Accel_Time<br>Control Source | [0]Prohibted<br>[1]PROFIBUS<br>[2]MODBUS<br>[3]Local setting                                                                                                          | 0~3                            | 0            | See 8.7 |
| P8.14  | Accel_Time<br>multiplier     |                                                                                                                                                                       | 0.1~10.0                       | 1.0          | See 8.7 |
| P8.15  | Accel 1<br>@switching        | Sets the 1 <sup>st</sup> accel switch<br>frequency.                                                                                                                   | 0.0~ <mark>300.0</mark><br>[%] | 100.0<br>[%] | See 8.7 |

7



| D9 16         | Accel 1 @time  | Sets the time to accelerate from       | 0.0~300.0 | 3.00  | See 8 7  |
|---------------|----------------|----------------------------------------|-----------|-------|----------|
| P0.10         |                | 0 to the P8.15.                        | [s]       | [s]   | 000 0.7  |
|               | Accel 2        | Sets the 2 <sup>nd</sup> accel switch  | 0.0~300.0 | 200.0 | See 8 7  |
| P0.17         | @switching     | frequency.                             | [%]       | [%]   | See 0.7  |
| D0 40         | Accel 2 @time  | Sets the time to accelerate from       | 0.0~300.0 | 4.00  | Sec. 9.7 |
| P8.18         |                | P8.15 to the P8.17.                    | [s]       | [s]   | See 6.7  |
| 50.40         | Accel 3        | Sets the 3 <sup>rd</sup> accel switch  | 0.0~300.0 | 240.0 | 0.0.0.7  |
| P8.19         | @switching     | frequency.                             | [%]       | [%]   | See 8.7  |
| 50.00         | Assal 2 Otimes | Sets the time to accelerate from       | 0.0~300.0 | 7.00  | 0.0.0.7  |
| P8.20         | Accel 3 @lime  | P8.17 to the P8.19.                    | [s]       | [s]   | See 8.7  |
| <b>DA A (</b> | Accel 4        | Sets the 4 <sup>th</sup> accel switch  | 0.0~300.0 | 300.0 | 007      |
| P8.21         | @switching     | frequency.                             | [%]       | [%]   | See 8.7  |
|               |                | Sets the time to accelerate from       | 0.0~300.0 | 10.00 | 0 07     |
| P8.22         | Accel 4 @time  | P8.19 to the P8.21.                    | [s]       | [s]   | See 8.7  |
|               | Accel 5        | Sets the 5 <sup>th</sup> accel switch  | 0.0~300.0 | 300.0 | 0 07     |
| P8.23         | @switching     | frequency.                             | [%]       | [%]   | See 8.7  |
|               |                | Sets the time to accelerate from       | 0.0~300.0 | 10.00 |          |
| P8.24         | Accel 5 @time  | P8.21 to the P8.23.                    | [s]       | [s]   | See 8.7  |
|               | Accel 6        | Sets the 6 <sup>th</sup> accel switch  | 0.0~300.0 | 300.0 | See 8.7  |
| P8.25         | @switching     | frequency.                             | [%]       | [%]   |          |
|               |                | Sets the time to accelerate from       | 0.0~300.0 | 10.00 |          |
| P8.26         | Accel 6 @time  | P8.23 to the P8.25.                    | [s]       | [s]   | See 8.7  |
|               | Accel 7        | Sets the 7 <sup>th</sup> accel switch  | 0.0~300.0 | 300.0 |          |
| P8.27         | @switching     | frequency.                             | [%]       | [%]   | See 8.7  |
|               |                | Sets the time to accelerate from       | 0.0~300.0 | 10.00 |          |
| P8.28         | Accel 7 @time  | P8.25 to the P8.27.                    | [s]       | [s]   | See 8.7  |
|               | Accel 8        | Sets the 8 <sup>th</sup> accel switch  | 0.0~300.0 | 300.0 |          |
| P8.29         | @switching     | frequency.                             | [%]       | [%]   | See 8.7  |
|               |                | Sets the time to accelerate from       | 0.0~300.0 | 10.00 |          |
| P8.30         | Accel 8 @time  | P8.27 to the P8.29.                    | [s]       | [s]   | See 8.7  |
|               |                | [0]Prohibted                           |           |       |          |
|               | Decel Time     | [1]PROFIBUS                            |           |       |          |
| P8.32         | Control Time   | [2]MODBUS                              | 0∼3       | 0     | See 8.7  |
|               |                | [3]Local setting                       |           |       |          |
|               | Decel_Time_Div | ······································ |           |       | 0 07     |
| P8.33         | multiplier     |                                        | 0.1~10.0  | 1.0   | See 8.7  |
|               | Decel 1        | Sets the 1 <sup>st</sup> decel switch  | 0.0~300.0 | 100.0 | Soo 9 7  |
| ۲۵.34         | @switching     | frequency.                             | [%]       | [%]   | See 0.1  |



| P8.35                 | Decel 1 @time | Sets the time to decelerate from       | 0.0~300.0   | 3.00  | See 8.7  |
|-----------------------|---------------|----------------------------------------|-------------|-------|----------|
|                       |               |                                        |             |       |          |
| P8.36                 | Decel 2       | Sets the 2 <sup>rd</sup> decel switch  | 0.0~300.0   | 200.0 | See 8.7  |
|                       | www.crimg     |                                        | [%]         | [%]   |          |
| P8.37                 | Decel 2 @time | Sets the time to decelerate from       | 0.0~300.0   | 4.00  | See 8.7  |
|                       |               |                                        |             |       |          |
| P8.38                 |               | Sets the 3 <sup>rd</sup> decel switch  | 0.0~300.0   | 240.0 | See 8.7  |
|                       | www.crimg     |                                        | [%]         | [%]   |          |
| P8.39                 | Decel 3 @time | Sets the time to decelerate from       | 0.0~300.0   | 7.00  | See 8.7  |
|                       |               |                                        |             | [S]   |          |
| P8.40                 | Decel 4       | Sets the 4" decel switch               | 0.0~300.0   | 300.0 | See 8.7  |
|                       | Contenting    | Trequency.                             | [%]         | [%]   |          |
| P8.41                 | Decel 4 @time | Sets the time to decelerate from       | 0.0~300.0   | 10.00 | See 8.7  |
|                       | _             | P8.40 to the P8.38.                    | [s]         | [s]   |          |
| P8.42                 | Decel 5       | Sets the 5 <sup>th</sup> decel switch  | 0.0~300.0   | 300.0 | See 8.7  |
| _                     | @switching    | frequency.                             | [%]         | [%]   |          |
| P8 43                 | Decel 5 @time | Sets the time to decelerate from       | 0.0~300.0   | 10.00 | See 8.7  |
| 1 0.40                |               | P8.42 to the P8.40.                    | [s]         | [s]   |          |
|                       | Decel 6       | Sets the 6 <sup>th</sup> decel switch  | 0.0~300.0   | 300.0 | See 8.7  |
| 1 0.44                | @switching    | frequency.                             | [%]         | [%]   | 000 0.7  |
|                       | Decel 6 @time | Sets the time to decelerate from       | 0.0~300.0   | 10.00 | See 8 7  |
| F0.40                 |               | P8.44 to the P8.42.                    | [s]         | [s]   | 000 0.7  |
| D0.40                 | Decel 7       | Sets the 7 <sup>th</sup> decel switch  | 0.0~300.0   | 300.0 | Soc 9 7  |
| P0.40                 | @switching    | frequency.                             | [%]         | [%]   | See 0.7  |
| D0 47                 | Dagal 7 Otima | Sets the time to decelerate from       | 0.0~300.0   | 10.00 | Sec. 9.7 |
| P8.47                 |               | P8.46 to the P8.44.                    | [s]         | [s]   | See 0.7  |
| 50.40                 | Decel 8       | Sets the 8 <sup>th</sup> decel switch  | 0.0~300.0   | 300.0 | 0 07     |
| P8.48                 | @switching    | frequency.                             | [%]         | [%]   | See 8.7  |
|                       |               | Sets the time to decelerate from       | 0.0~300.0   | 10.00 |          |
| P8.49                 | Decel 8 @time | P8.48 to the P8.46.                    | [s]         | [s]   | See 8.7  |
|                       | Free Running  |                                        | 0.0~300.0   | 0.0   |          |
| P8.54                 | START_SPEED   |                                        | [%]         | [%]   |          |
| <b>D</b> 0 <b>C</b> 5 | Osumtan Dasal | [0] Disabled                           |             |       |          |
| P8.55                 |               | [1] Enabled                            | <u> </u>    | U     |          |
|                       | Counter_Decel |                                        | 0.00~300.00 | 3.00  |          |
| P0.50                 | time          |                                        | [s]         | [s]   |          |
| P8.57                 | E-STOP MODE   | [0] Ramp STOP<br>[1] Free Running STOP | 0~1         | 1     |          |



| P8.58 E- | E STOR time | 0.00 | 0~300.00 | 1.50 |  |
|----------|-------------|------|----------|------|--|
|          |             |      | [s]      | [s]  |  |

## 7.9 Motion Control 2 P9

| Par.NO | Parameter Name               | Description                                                                                                                                                           | Range              | Default      | Ref.    |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|---------|
| P9.0   | RUN_SRC                      | <ul><li>[0] Terminal (DI)</li><li>[1] Local Operator</li><li>[2] Profibus DP</li><li>[3] MODBUS</li><li>[4] FREE BLOCK</li></ul>                                      | 0~4                | 0            |         |
| P9.1   | RUN_SRC<br>@FREE BLOCK       | To issue the Run command via the FREE BLOCK.                                                                                                                          |                    |              |         |
| P9.2   | DIR_SRC<br>@FREE_BLOCK       | To issue the Direction command via the FREE_BLOCK.                                                                                                                    |                    |              |         |
| P9.3   | STOP mode                    | [0] Ramp STOP<br>[1] Free Running STOP                                                                                                                                | 0~1                | 0            | See 8.7 |
| P9.6   | START delay                  | Sets the start delay time.                                                                                                                                            | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.7 |
| P9.7   | STOP_HOLD<br>Time            | Sets the stop hold time.                                                                                                                                              | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.7 |
| P9.10  | Ramp_Input<br>Source         | <ul> <li>[0] TERMINAL</li> <li>[1] AI 1</li> <li>[2] AI 2</li> <li>[3] LOCAL OPERATOR</li> <li>[4] Profibus DP</li> <li>[5] MODBUS</li> <li>[6] FREE BLOCK</li> </ul> | 0~6                | 0            |         |
| P9.11  | Ramp_Src<br>@FREE_BLOCK      | To issue the Ramp input source via the FREE_BLOCK.                                                                                                                    |                    |              |         |
| P9.13  | Accel_Time<br>Control Source | [0]DISABLE<br>[1]PROFIBUS<br>[2]MODBUS<br>[3]Local setting                                                                                                            | 0~3                | 0            | See 8.7 |
| P9.14  | Accel_Time<br>multiplier     |                                                                                                                                                                       | 0.1~10.0           | 1.0          | See 8.7 |
| P9.15  | Accel 1<br>@switching        | Sets the 1 <sup>st</sup> accel switch<br>frequency.                                                                                                                   | 0.0~300.0<br>[%]   | 100.0<br>[%] | See 8.7 |
| P9.16  | Accel 1 @time                | Sets the time to accelerate from 0 to the P9.15.                                                                                                                      | 0.0~300.0<br>[s]   | 3.00<br>[s]  | See 8.7 |



| P9.17 | Accel 2<br>@switching        | Sets the 2 <sup>nd</sup> accel switch frequency.           | 0.0~300.0<br>[%] | 200.0<br>[%] | See 8.7 |
|-------|------------------------------|------------------------------------------------------------|------------------|--------------|---------|
| P9.18 | Accel 2 @time                | Sets the time to accelerate from P9.15 to the P9.17.       | 0.0~300.0<br>[s] | 4.00<br>[s]  | See 8.7 |
| P9.19 | Accel 3<br>@switching        | Sets the 3 <sup>rd</sup> accel switch frequency.           | 0.0~300.0<br>[%] | 240.0<br>[%] | See 8.7 |
| P9.20 | Accel 3 @time                | Sets the time to accelerate from P9.17 to the P9.19.       | 0.0~300.0<br>[s] | 7.00<br>[s]  | See 8.7 |
| P9.21 | Accel 4<br>@switching        | Sets the 4 <sup>th</sup> accel switch frequency.           | 0.0~300.0<br>[%] | 300.0<br>[%] | See 8.7 |
| P9.22 | Accel 4 @time                | Sets the time to accelerate from P9.19 to the P9.21.       | 0.0~300.0<br>[s] | 10.00<br>[s] | See 8.7 |
| P9.23 | Accel 5<br>@switching        | Sets the 5 <sup>th</sup> accel switch frequency.           | 0.0~300.0<br>[%] | 300.0<br>[%] | See 8.7 |
| P9.24 | Accel 5 @time                | Sets the time to accelerate from P9.21 to the P9.23.       | 0.0~300.0<br>[s] | 10.00<br>[s] | See 8.7 |
| P9.25 | Accel 6<br>@switching        | Sets the 6 <sup>th</sup> accel switch<br>frequency.        | 0.0~300.0<br>[%] | 300.0<br>[%] | See 8.7 |
| P9.26 | Accel 6 @time                | Sets the time to accelerate from P9.23 to the P9.25.       | 0.0~300.0<br>[s] | 10.00<br>[s] | See 8.7 |
| P9.27 | Accel 7<br>@switching        | Sets the 7 <sup>th</sup> accel switch frequency.           | 0.0~300.0<br>[%] | 300.0<br>[%] | See 8.7 |
| P9.28 | Accel 7 @time                | Sets the time to accelerate from P9.25 to the P9.27.       | 0.0~300.0<br>[s] | 10.00<br>[s] | See 8.7 |
| P9.29 | Accel 8<br>@switching        | Sets the 8 <sup>th</sup> accel switch frequency.           | 0.0~300.0<br>[%] | 300.0<br>[%] | See 8.7 |
| P9.30 | Accel 8 @time                | Sets the time to accelerate from P9.27 to the P9.29.       | 0.0~300.0<br>[s] | 10.00<br>[s] | See 8.7 |
| P9.32 | Decel_Time<br>Control Source | [0]DISABLE<br>[1]PROFIBUS<br>[2]MODBUS<br>[3]Local setting | 0~3              | 0            | See 8.7 |
| P9.33 | Decel_Time_Div<br>multiplier |                                                            | 0.1~10.0         | 1.0          | See 8.7 |
| P9.34 | Decel 1<br>@switching        | Sets the 1 <sup>st</sup> decel switch<br>frequency.        | 0.0~300.0<br>[%] | 100.0<br>[%] | See 8.7 |
| P9.35 | Decel 1 @time                | Sets the time to decelerate from P9.34 to the 0.           | 0.0~300.0<br>[s] | 3.00<br>[s]  | See 8.7 |



| P9.36  | Decel 2                     | Sets the 2 <sup>nd</sup> decel switch                | 0.0~300.0          | 200.0        | See 8.7 |
|--------|-----------------------------|------------------------------------------------------|--------------------|--------------|---------|
| P9.37  | Decel 2 @time               | Sets the time to decelerate from                     | 0.0~300.0          | 4.00         | See 8.7 |
| P9 38  | Decel 3                     | Sets the 3 <sup>rd</sup> decel switch                | [s]<br>0.0~300.0   | [s]<br>240.0 | See 8.7 |
| 1 0.00 | @switching                  | frequency.                                           | [%]                | [%]          |         |
| P9.39  | Decel 3 @time               | Sets the time to decelerate from P9.38 to the P9.36. | 0.0∼300.0<br>[s]   | 7.00<br>[s]  | See 8.7 |
| P9.40  | Decel 4<br>@switching       | Sets the 4 <sup>th</sup> decel switch frequency.     | 0.0~300.0<br>[%]   | 300.0<br>[%] | See 8.7 |
| P9.41  | Decel 4 @time               | Sets the time to decelerate from P9.40 to the P9.38. | 0.0~300.0<br>[s]   | 10.00<br>[s] | See 8.7 |
| P9.42  | Decel 5<br>@switching       | Sets the 5 <sup>th</sup> decel switch frequency.     | 0.0~300.0<br>[%]   | 300.0<br>[%] | See 8.7 |
| P9.43  | Decel 5 @time               | Sets the time to decelerate from P9.42 to the P9.40. | 0.0~300.0<br>[s]   | 10.00<br>[s] | See 8.7 |
| P9.44  | Decel 6<br>@switching       | Sets the 6 <sup>th</sup> decel switch<br>frequency.  | 0.0~300.0<br>[%]   | 300.0<br>[%] | See 8.7 |
| P9.45  | Decel 6 @time               | Sets the time to decelerate from P9.44 to the P9.42. | 0.0~300.0<br>[s]   | 10.00<br>[s] | See 8.7 |
| P9.46  | Decel 7<br>@switching       | Sets the 7 <sup>th</sup> decel switch frequency.     | 0.0~300.0<br>[%]   | 300.0<br>[%] | See 8.7 |
| P9.47  | Decel 7 @time               | Sets the time to decelerate from P9.46 to the P9.44. | 0.0~300.0<br>[s]   | 10.00<br>[s] | See 8.7 |
| P9.48  | Decel 8<br>@switching       | Sets the 8 <sup>th</sup> decel switch frequency.     | 0.0~300.0<br>[%]   | 300.0<br>[%] | See 8.7 |
| P9.49  | Decel 8 @time               | Sets the time to decelerate from P9.48 to the P9.46. | 0.0~300.0<br>[s]   | 10.00<br>[s] | See 8.7 |
| P9.54  | Free Running<br>START_SPEED |                                                      | 0.0~300.0          | 0.0          |         |
| P9.55  | Counter_Decel               | [0] Disabled<br>[1] Enabled                          | 0~1                | 0            |         |
| P9.56  | Counter_Decel<br>time       |                                                      | 0.00~300.00<br>[s] | 3.00<br>[s]  |         |
| P9.57  | E-STOP MODE                 | [0] Ramp STOP<br>[1] Free Running STOP               | 0~1                | 1            |         |
| P9.58  | E-STOP time                 |                                                      | 0.00~300.00<br>[s] | 1.50<br>[s]  |         |

91

# 7.10 Motion Control 3 P10

| Par.NO | Parameter Name               | Description                                                                                                                                                           | Range              | Default      | Ref.    |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|---------|
| P10.0  | RUN_SRC                      | <ul> <li>[0] Terminal (DI)</li> <li>[1] Local Operator</li> <li>[2] Profibus DP</li> <li>[3] MODBUS</li> <li>[4] FREE BLOCK</li> </ul>                                | 0~4                | 0            |         |
| P10.1  | RUN_SRC<br>@FREE_BLOCK       | To issue the Run command via the FREE_BLOCK.                                                                                                                          |                    |              |         |
| P10.2  | DIR_SRC<br>@FREE_BLOCK       | To issue the Direction command via the FREE_BLOCK.                                                                                                                    |                    |              |         |
| P10.3  | STOP mode                    | [0] Ramp STOP<br>[1] Free Running STOP                                                                                                                                | 0~1                | 0            | See 8.7 |
| P10.6  | START delay                  | Sets the start delay time.                                                                                                                                            | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.7 |
| P10.7  | STOP_HOLD<br>Time            | Sets the stop hold time.                                                                                                                                              | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.7 |
| P10.10 | Speed_Input<br>Source        | <ul> <li>[0] TERMINAL</li> <li>[1] AI 1</li> <li>[2] AI 2</li> <li>[3] LOCAL OPERATOR</li> <li>[4] Profibus DP</li> <li>[5] MODBUS</li> <li>[6] FREE BLOCK</li> </ul> | 0~6                | 0            |         |
| P10.11 | Speed_Src<br>@FREE_BLOCK     | To issue the speed given free function block source                                                                                                                   |                    |              |         |
| P10.13 | Accel_Time<br>Control Source | [0]DISABLE<br>[1]PROFIBUS<br>[2]MODBUS<br>[3]Local setting                                                                                                            | 0~3                | 0            | See 8.7 |
| P10.14 | Accel_Time<br>multiplier     |                                                                                                                                                                       | 0.1~10.0           | 1.0          | See 8.7 |
| P10.15 | Accel 1<br>@switching        | Sets the 1 <sup>st</sup> accel switch<br>frequency.                                                                                                                   | 0.0~300.0<br>[%]   | 100.0<br>[%] | See 8.7 |
| P10.16 | Accel 1 @time                | Sets the time to accelerate from 0 to the P10.15.                                                                                                                     | 0.0~300.0<br>[s]   | 3.00<br>[s]  | See 8.7 |
| P10.17 | Accel 2<br>@switching        | Sets the 2 <sup>nd</sup> accel switch frequency.                                                                                                                      | 0.0~300.0<br>[%]   | 200.0<br>[%] | See 8.7 |

| P10 18         | Accel 2 @time   | Sets the time to accelerate from      | 0.0~300.0 | 4.00  | See 8.7  |
|----------------|-----------------|---------------------------------------|-----------|-------|----------|
| 1 10.10        |                 | P10.15 to the P10.17.                 | [s]       | [s]   | 000 0.7  |
| P10 10         | Accel 3         | Sets the 3 <sup>rd</sup> accel switch | 0.0~300.0 | 240.0 | See 8.7  |
| 1 10.13        | @switching      | frequency.                            | [%]       | [%]   | 000 0.1  |
| P10 20         | Accel 3 @time   | Sets the time to accelerate from      | 0.0~300.0 | 7.00  | See 8.7  |
| 1 10.20        |                 | P10.17 to the P10.19.                 | [s]       | [s]   | 000 0.7  |
| D10 21         | Accel 4         | Sets the 4 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | See 8.7  |
| 1 10.21        | @switching      | frequency.                            | [%]       | [%]   | 000 0.7  |
| D10 22         | Accel 4 @time   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | See 8.7  |
| F 10.22        |                 | P10.19 to the P10.21.                 | [s]       | [s]   | 000 0.7  |
| D10 22         | Accel 5         | Sets the 5 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | See 8 7  |
| F 10.23        | @switching      | frequency.                            | [%]       | [%]   | 000 0.7  |
| D10 24         | Accel 5 @time   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | See 8 7  |
| P10.24         |                 | P10.21 to the P10.23.                 | [s]       | [s]   |          |
| D10.25         | Accel 6         | Sets the 6 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | Soo 8 7  |
| P10.25         | @switching      | frequency.                            | [%]       | [%]   | See 0.7  |
| D40.00         | Accol 6 Otimo   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | Sec. 9.7 |
| P10.20         | Accel 6 @time   | P10.23 to the P10.25.                 | [s]       | [s]   | See 0.7  |
| D40.07         | Accel 7         | Sets the 7 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | Soc 9 7  |
| P10.27         | @switching      | frequency.                            | [%]       | [%]   | See 0.7  |
| <b>D</b> 40.00 | Accel 7 Otime   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | Sec. 9.7 |
| P10.28         | Accel 7 Willine | P10.25 to the P10.27.                 | [s]       | [s]   | See 6.7  |
| <b>B</b> 40.00 | Accel 8         | Sets the 8 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | 0.007    |
| P10.29         | @switching      | frequency.                            | [%]       | [%]   | See 8.7  |
| <b>B</b> 40.00 | Assal 0 Otimes  | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | 0.0.0.7  |
| P10.30         | Accel 8 @lime   | P10.27 to the P10.29.                 | [s]       | [s]   | See 8.7  |
|                |                 | [0]DISABLE                            |           |       |          |
| <b>D</b> 40.00 | Decel_Time      | [1]PROFIBUS                           | 0.0       | 0     | 0.0.0.7  |
| P10.32         | Control Source  | [2]MODBUS                             | 0~3       | 0     | See 8.7  |
|                |                 | [3]Local setting                      |           |       |          |
| D10 22         | Decel_Time_Div  |                                       | 0.1~10.0  | 1.0   | See 8 7  |
| F 10.55        | multiplier      |                                       | 0.1**10.0 | 1.0   | 000 0.7  |
| D10 3/         | Decel 1         | Sets the 1 <sup>st</sup> decel switch | 0.0~300.0 | 100.0 | See 8.7  |
| 1 10.04        | @switching      | frequency.                            | [%]       | [%]   |          |
| P10 35         | Decel 1 @time   | Sets the time to decelerate from      | 0.0~300.0 | 3.00  | See 8 7  |
| 1 10.00        |                 | P10.34 to the 0.                      | [s]       | [s]   | 366 0.1  |
| P10 36         | Decel 2         | Sets the 2 <sup>nd</sup> decel switch | 0.0~300.0 | 200.0 | See 8 7  |
| 1 10.30        | @switching      | frequency.                            | [%]       | [%]   | 366 0.7  |

7



| P10.37  | Decel 2 @time | Sets the time to decelerate from      | 0.0~300.0             | 4.00         | See 8.7 |
|---------|---------------|---------------------------------------|-----------------------|--------------|---------|
|         |               | P10.36 to the P10.34.                 | [s]                   | [s]          |         |
| P10 38  | Decel 3       | Sets the 3 <sup>rd</sup> decel switch | 0.0~300.0             | 240.0        | See 8 7 |
| 1 10.50 | @switching    | switching frequency.                  | [%]                   | [%]          | 000 0.1 |
| D10.20  | Docol 2 Otimo | Sets the time to decelerate from      | 0.0~300.0             | 7.00         | Soc 9 7 |
| P10.39  | Decer 3 @time | P10.38 to the P10.36.                 | [s]                   | [s]          | See 0.7 |
| 540.40  | Decel 4       | Sets the 4 <sup>th</sup> decel switch | 0.0~300.0             | 300.0        | 0.0.0.7 |
| P10.40  | @switching    | frequency.                            | [%]                   | [%]          | See 0.7 |
|         |               | Sets the time to decelerate from      | 0.0~300.0             | 10.00        | 0 07    |
| P10.41  | Decel 4 @time | P10.40 to the P10.38.                 | [s]                   | [s]          | See 8.7 |
|         | Decel 5       | Sets the 5 <sup>th</sup> decel switch | 0.0~300.0             | 300.0        |         |
| P10.42  | @switching    | frequency.                            | [%]                   | [%]          | See 8.7 |
|         |               | Sets the time to decelerate from      | 0.0~300.0             | 10.00        |         |
| P10.43  | Decel 5 @time | P10.42 to the P10.40.                 | [s]                   | [s]          | See 8.7 |
|         | Decel 6       | Sets the 6 <sup>th</sup> decel switch | 0.0~300.0             | 300.0        |         |
| P10.44  | @switching    | witching frequency.                   | [%]                   | [%]          | See 8.7 |
|         | Decel 6 @time | Sets the time to decelerate from      | 0.0~300.0             | 10.00        |         |
| P10.45  |               | P10.44 to the P10.42.                 | [s]                   | [s]          | See 8.7 |
|         | Decel 7       | Sets the 7 <sup>th</sup> decel switch | 0.0~300.0             | 300.0        |         |
| P10.46  | @switching    | frequency.                            | [%]                   | [%]          | See 8.7 |
|         |               | Sets the time to decelerate from      | 0.0~300.0             | 10.00        |         |
| P10.47  | Decel 7 @time | P10.46 to the $P10.44$ .              | [s]                   | [s]          | See 8.7 |
|         | Decel 8       | Sets the 8 <sup>th</sup> decel switch | [0]<br>0_0~300_0      | 300.0        |         |
| P10.48  | @switching    | frequency                             | 0.0 000.0<br>[%]      | 000.0<br>۲%1 | See 8.7 |
|         | Gerniering    | Sate the time to decelerate from      | [/0]                  | 10.00        |         |
| P10.49  | Decel 8 @time | P10 48 to the P10 46                  | 0.0 <sup></sup> 300.0 | 10.00        | See 8.7 |
|         |               |                                       |                       | [5]          |         |
| P10.54  | START SPEED   |                                       | 0.0/~300.0            | 0.0          |         |
|         | START_SI LED  |                                       | [%]                   | [%]          |         |
| P10.55  | Counter_Decel | [1] Enabled                           | 0~1                   | 0            |         |
|         | Counter Decel |                                       | 0.00~300.00           | 3.00         |         |
| P10.56  | time          |                                       | [e]                   | 0.00<br>[e]  |         |
|         |               | IOI Ramp STOP                         | [3]                   | [5]          |         |
| P10.57  | E-STOP MODE   | [1] Free Running STOP                 | 0~1                   | 1            |         |
|         |               | <u> </u>                              | 0.00~300.00           | 1.50         |         |
| P10.58  | E-STOP time   |                                       | [s]                   | [s]          |         |

Please visit the official website for more information: www.guide-edrive.com

# 7.11 Motion Control 4 P11

| Par.NO | Parameter Name               | Description                                                                                                                                                           | Range              | Default      | Ref.    |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|---------|
| P11.0  | RUN_SRC                      | <ul> <li>[0] Terminal (DI)</li> <li>[1] Local Operator</li> <li>[2] Profibus DP</li> <li>[3] MODBUS</li> <li>[4] FREE BLOCK</li> </ul>                                | 0~4                | 0            |         |
| P11.1  | RUN_SRC<br>@FREE_BLOCK       | To issue the Run command via the FREE_BLOCK.                                                                                                                          |                    |              |         |
| P11.2  | DIR_SRC<br>@FREE_BLOCK       | To issue the Direction command via the FREE_BLOCK.                                                                                                                    |                    |              |         |
| P11.3  | STOP mode                    | [0] Ramp STOP<br>[1] Free Running STOP                                                                                                                                | 0~1                | 0            | See 8.7 |
| P11.6  | START delay                  | Sets the start delay time.                                                                                                                                            | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.7 |
| P11.7  | STOP_HOLD<br>Time            | Sets the stop hold time.                                                                                                                                              | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.7 |
| P11.10 | Speed_Input<br>Source        | <ul> <li>[0] TERMINAL</li> <li>[1] AI 1</li> <li>[2] AI 2</li> <li>[3] LOCAL OPERATOR</li> <li>[4] Profibus DP</li> <li>[5] MODBUS</li> <li>[6] FREE BLOCK</li> </ul> | 0~6                | 0            |         |
| P11.11 | Speed_Src<br>@FREE_BLOCK     | To issue the speed given free function block source                                                                                                                   |                    |              |         |
| P11.13 | Accel_Time<br>Control Source | [0]DISABLE<br>[1]PROFIBUS<br>[2]MODBUS<br>[3]Local setting                                                                                                            | 0~3                | 0            | See 8.7 |
| P11.14 | Accel_Time<br>multiplier     |                                                                                                                                                                       | 0.1~10.0           | 1.0          | See 8.7 |
| P11.15 | Accel 1<br>@switching        | Sets the 1 <sup>st</sup> accel switch<br>frequency.                                                                                                                   | 0.0~300.0<br>[%]   | 100.0<br>[%] | See 8.7 |
| P11.16 | Accel 1 @time                | Sets the time to accelerate from 0 to the P11.15.                                                                                                                     | 0.0~300.0<br>[s]   | 3.00<br>[s]  | See 8.7 |
| P11.17 | Accel 2<br>@switching        | Sets the 2 <sup>nd</sup> accel switch frequency.                                                                                                                      | 0.0~300.0<br>[%]   | 200.0<br>[%] | See 8.7 |

| D11 19         | Accel 2 @time   | Sets the time to accelerate from      | 0.0~300.0 | 4.00  | See 8.7  |
|----------------|-----------------|---------------------------------------|-----------|-------|----------|
| F 11.10        |                 | P11.15 to the P11.17.                 | [s]       | [s]   | 000 0.7  |
| D11 10         | Accel 3         | Sets the 3 <sup>rd</sup> accel switch | 0.0~300.0 | 240.0 | See 8 7  |
| F 11.19        | @switching      | frequency.                            | [%]       | [%]   | 000 0.7  |
| D11 20         | Accel 3 @time   | Sets the time to accelerate from      | 0.0~300.0 | 7.00  | Soc 9 7  |
| F11.20         |                 | P11.17 to the P11.19.                 | [s]       | [s]   | 000 0.7  |
| D11 01         | Accel 4         | Sets the 4 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | Soo 8 7  |
| 1 11.21        | @switching      | frequency.                            | [%]       | [%]   | 000 0.7  |
| D11 00         | Accel 4 @time   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | See 8 7  |
| P11.22         |                 | P11.19 to the P11.21.                 | [s]       | [s]   | See 0.7  |
| D44.00         | Accel 5         | Sets the 5 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | Soc 9 7  |
| P11.23         | @switching      | frequency.                            | [%]       | [%]   | See 0.7  |
| D44.04         | Accol E Otimo   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | Sec. 9.7 |
| P11.24         | Accel 5 @time   | P11.21 to the P11.23.                 | [s]       | [s]   | See 0.7  |
| D44.05         | Accel 6         | Sets the 6 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | Sec. 9.7 |
| P11.25         | @switching      | frequency.                            | [%]       | [%]   |          |
| D44.00         | Accel 6 Otime   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | Sec. 9.7 |
| P11.26         | Accel 6 @ume    | P11.23 to the P11.25.                 | [s]       | [s]   | See 0.7  |
| D44.07         | Accel 7         | Sets the 7 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | See 8.7  |
| P11.27         | @switching      | frequency.                            | [%]       | [%]   |          |
| D44.00         | Accol 7 Otimo   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | Sec. 9.7 |
| P11.28         | Accel 7 @time   | P11.25 to the P11.27.                 | [s]       | [s]   | See 0.7  |
| <b>D</b> 44.00 | Accel 8         | Sets the 8 <sup>th</sup> accel switch | 0.0~300.0 | 300.0 | 000.07   |
| P11.29         | @switching      | frequency.                            | [%]       | [%]   | See 0.7  |
| D44.00         | Accel 9 Otime   | Sets the time to accelerate from      | 0.0~300.0 | 10.00 | Sec. 9.7 |
| P11.30         | Accel 8 Willine | P11.27 to the P11.29.                 | [s]       | [s]   | See 0.7  |
|                |                 | [0]DISABLE                            |           |       |          |
| D44.00         | Decel_Time      | [1]PROFIBUS                           | 0 0       | 0     | Sec. 9.7 |
| P11.32         | Control Source  | [2]MODBUS                             | 0~3       | 0     | See 0.7  |
|                |                 | [3]Local setting                      |           |       |          |
| D11 22         | Decel_Time_Div  |                                       | 0.1~10.0  | 1.0   | See 8 7  |
| F 11.55        | multiplier      |                                       | 0.1 10.0  | 1.0   | 000 0.7  |
| P11 34         | Decel 1         | Sets the 1 <sup>st</sup> decel switch | 0.0~300.0 | 100.0 | See 8.7  |
|                | @switching      | frequency.                            | [%]       | [%]   | -        |
| P11 35         | Decel 1 @time   | Sets the time to decelerate from      | 0.0~300.0 | 3.00  | See 8.7  |
| 1 11.00        |                 | P11.34 to the 0.                      | [s]       | [s]   |          |
| P11 36         | Decel 2         | Sets the 2 <sup>nd</sup> decel switch | 0.0~300.0 | 200.0 | See 8 7  |
| 1 11.00        | @switching      | frequency.                            | [%]       | [%]   | 000 0.1  |



| D44.07  | Docol 2 Otimo | Sets the time to decelerate from      | 0.0~300.0   | 4.00    | Soc 9 7  |
|---------|---------------|---------------------------------------|-------------|---------|----------|
| PTI.37  |               | P11.36 to the P11.34.                 | [s]         | [s]     | See 0.7  |
| D44 20  | Decel 3       | Sets the 3 <sup>rd</sup> decel switch | 0.0~300.0   | 240.0   | Soo 8 7  |
| P11.38  | @switching    | frequency.                            | [%]         | [%]     | See 0.7  |
| D44.00  | Docol 2 Otimo | Sets the time to decelerate from      | 0.0~300.0   | 7.00    | Soc 9 7  |
| P11.39  | Decer 3 @time | P11.38 to the P11.36.                 | [s]         | [s]     | 366 0.7  |
| D11 40  | Decel 4       | Sets the 4 <sup>th</sup> decel switch | 0.0~300.0   | 300.0   | See 8 7  |
| P11.40  | @switching    | frequency.                            | [%]         | [%]     | 566 0.7  |
|         | Docol 4 @timo | Sets the time to decelerate from      | 0.0~300.0   | 10.00   | Soc 9 7  |
| P11.41  | Decei 4 @time | P11.40 to the P11.38.                 | [s]         | [s]     | See 0.7  |
| D44 40  | Decel 5       | Sets the 5 <sup>th</sup> decel switch | 0.0~300.0   | 300.0   | Soc 9 7  |
| P11.42  | @switching    | frequency.                            | [%]         | [%]     | See 0.7  |
| D44 40  | Decel 5 Otime | Sets the time to decelerate from      | 0.0~300.0   | 10.00   | Sec. 9.7 |
| P11.43  | Decer 5 @time | P11.42 to the P11.40.                 | [s]         | [s]     | See 0.7  |
|         | Decel 6       | Sets the 6 <sup>th</sup> decel switch | 0.0~300.0   | 300.0   | Sec. 9.7 |
| P11.44  | @switching    | frequency.                            | [%]         | [%]     | See 8.7  |
| D44.45  | Decel 6 @time | Sets the time to decelerate from      | 0.0~300.0   | ) 10.00 | Sec. 9.7 |
| P11.45  |               | P11.44 to the P11.42.                 | [s]         | [s]     | See 0.7  |
| D44.40  | Decel 7       | Sets the 7 <sup>th</sup> decel switch | 0.0~300.0   | 300.0   | Sec. 9.7 |
| P11.46  | @switching    | frequency.                            | [%]         | [%]     | See 0.7  |
|         | Docol 7 Otimo | Sets the time to decelerate from      | 0.0~300.0   | 10.00   | Soc 9 7  |
| P11.47  |               | P11.46 to the P11.44.                 | [s]         | [s]     | See 0.7  |
| D44 40  | Decel 8       | Sets the 8 <sup>th</sup> decel switch | 0.0~300.0   | 300.0   | Soc 9 7  |
| P11.40  | @switching    | frequency.                            | [%]         | [%]     | See 0.7  |
| D11 10  | Docol 8 Otimo | Sets the time to decelerate from      | 0.0~300.0   | 10.00   | Soo 8 7  |
| P11.49  |               | P11.48 to the P11.46.                 | [s]         | [s]     | See 0.7  |
|         | Free Running  |                                       | 0.0~300.0   | 0.0     |          |
| P11.34  | START_SPEED   |                                       | [%]         | [%]     |          |
| D11 55  | Counter Decel | [0] Disabled                          | 0∼1         | 0       |          |
| 1 11.55 |               | [1] Enabled                           |             | Ŭ       |          |
| P11 56  | Counter_Decel |                                       | 0.00~300.00 | 3.00    |          |
|         | time          |                                       | [s]         | [s]     |          |
| P11.57  | E-STOP MODE   | [0] Ramp STOP                         | 0~1         | 1       |          |
|         |               | [1] Free Running STOP                 | 0.00 000.00 | 4 50    |          |
| P11.58  | E-STOP time   |                                       | 0.00~300.00 | 1.50    |          |
|         |               |                                       | [S]         | [S]     |          |

7

# 7.12 Motor 1 Step Speed Brake Set P12

| Par.NO  | Parameter Name          | Description                                   | Range           | Default    | Ref.    |
|---------|-------------------------|-----------------------------------------------|-----------------|------------|---------|
| P12.0   | Multi-step MODE         | [0] Direct Step Input<br>[1] Bit Decoding     | 0~1             | 1          | See 8.8 |
| P12.1   | Multi-step Unit         | [0][%]<br>[1][Hz]<br>[2][rpm]                 | 0~2             | 1          |         |
| P12.2   | MSTEP @step 1           |                                               | 0.0~3000.0      | 10.0       |         |
| P12.3   | MSTEP @step 2           |                                               | 0.0~3000.0      | 20.0       |         |
| P12.4   | MSTEP @step 3           |                                               | 0.0~3000.0      | 35.0       |         |
| P12.5   | MSTEP @step 4           |                                               | 0.0~3000.0      | 50.0       |         |
| P12.6   | MSTEP @step 5           |                                               | 0.0~3000.0      | 50.0       |         |
| P12.7   | MSTEP @step 6           |                                               | 0.0~3000.0      | 50.0       |         |
| P12.8   | MSTEP @step 7           |                                               | 0.0~3000.0      | 50.0       |         |
| P12.9   | MSTEP @step 8           |                                               | 0.0~3000.0      | 50.0       |         |
| P12.10  | MSTEP @step 9           |                                               | 0.0~3000.0      | 50.0       |         |
| P12.11  | MSTEP @step 10          |                                               | 0.0~3000.0      | 50.0       |         |
| P12.12  | MSTEP @step 11          |                                               | 0.0~3000.0      | 50.0       |         |
| P12.13  | MSTEP @step 12          |                                               | 0.0~3000.0      | 50.0       |         |
| P12.14  | MSTEP @step 13          |                                               | 0.0~3000.0      | 50.0       |         |
| P12.15  | MSTEP @step 14          |                                               | 0.0~3000.0      | 50.0       |         |
| P12.16  | MSTEP @step 15          |                                               | 0.0~3000.0      | 50.0       |         |
| P12.17  | MSTEP @step 16          |                                               | 0.0~3000.0      | 50.0       |         |
| P12.22  | Brake Release<br>@speed | Sets the brake release speed when in forward. | 0.0~20.0<br>[%] | 2.0<br>[%] | See 8.8 |
|         | Brake Release           | Sets the brake release speed                  | 0.0~20.0        | 0.0        |         |
| P12.23  | @Rev_Speed              | when in reverse.                              | [%]             | [%]        | See 8.8 |
| D12 24  | Brake Release           | Sets the brake release torque                 | 0.0~200.0       | 30.0       | Soo 9 9 |
| F 12.24 | @Torque                 | when in forward                               | [%]             | [%]        | 366 0.0 |
| P12.25  | Brake Release           | Sets the brake release torque                 | 0.0~200.0       | 20.0       | See 8.8 |
|         | @Rev_lorque             | when in reverse.                              | [%]             | [%]        |         |
| D12 26  | Brake<br>Release Ctrl   |                                               | 0.00~2.00       | 0.00       | See 8 8 |
| F 12.20 | @Delay_time             |                                               | [s]             | [s]        | SEE 0.0 |

|                                | Brake           |                              |             |      |          |
|--------------------------------|-----------------|------------------------------|-------------|------|----------|
| D10.07                         | Release_Ctrl    |                              | 0.00~2.00   | 0.00 | Sec. 9.9 |
| P12.27                         | @RevSpd         |                              | [s]         | [s]  | See 0.0  |
|                                | Delay_time      |                              |             |      |          |
| D40.00                         | Brake Release   | Sets the delay time of brake | 0.00~2.00   | 0.07 | 0        |
| P12.28                         | @Delay_time     | release when in forward.     | [s]         | [s]  | See 8.8  |
|                                | Brake Release   | Sata the delay time of broke | 0.00 - 2.00 | 0.07 |          |
| P12.29                         | @RevSpd         |                              | 0.00/ 2.00  | 0.07 | See 8.8  |
|                                | Delay_time      | release when in reverse.     | [s]         | [s]  |          |
| <b>D</b> 40.00                 | Brake Closure   | Sets the brake closure speed | 0.0~20.0    | 0.0  | See 8.8  |
| P12.32                         | @speed          | when in forward.             | [%]         | [%]  |          |
| <b>B</b> 4 <b>B</b> 4 <b>B</b> | Brake Closure   | Sets the brake closure speed | 0.0~20.0    | 0.0  | See 8.8  |
| P12.33                         | @Rev_Speed      | when in reverse.             | [%]         | [%]  |          |
|                                | Brake Closure   | Sets the delay time of brake | 0.00~2.00   | 0.00 |          |
| P12.34                         | @Delay_time     | closure when in forward.     | [s]         | [s]  | See 8.8  |
|                                | Brake Closure   | Sets the delay time of brake | 0.00~2.00   | 0.00 |          |
| P12.35                         | @Rev_Delay_time | closure when in reverse.     | [s]         | [s]  | See 8.8  |
|                                | Brake Closure   | Sets the brake closure time  | 0.00~2.00   | 0.50 |          |
| P12.36                         | @time           | when in forward.             | [s]         | [s]  | See 8.8  |
|                                | Brake Closure   | Sets the brake closure time  | 0.00~2.00   | 0.50 |          |
| P12.37                         |                 | when in reverse              | 0.00 2.00   | 0.00 | See 8.8  |
| 1                              | @Rev time       |                              | [S]         | [S]  | _        |

# 7.13 Motor 2 Step Speed Brake Set P13

| Par.NO | Parameter Name  | Description                               | Range      | Default | Ref.    |
|--------|-----------------|-------------------------------------------|------------|---------|---------|
| P13.0  | Multi-step MODE | [0] Direct Step Input<br>[1] Bit Decoding | 0~1        | 1       | See 8.8 |
| P13.1  | Multi-step Unit | [0][%]<br>[1][Hz]<br>[2][rpm]             | 0~2        | 1       |         |
| P13.2  | MSTEP @step 1   |                                           | 0.0~3000.0 | 10.0    |         |
| P13.3  | MSTEP @step 2   |                                           | 0.0~3000.0 | 20.0    |         |
| P13.4  | MSTEP @step 3   |                                           | 0.0~3000.0 | 35.0    |         |
| P13.5  | MSTEP @step 4   |                                           | 0.0~3000.0 | 50.0    |         |
| P13.6  | MSTEP @step 5   |                                           | 0.0~3000.0 | 50.0    |         |
| P13.7  | MSTEP @step 6   |                                           | 0.0~3000.0 | 50.0    |         |
| P13.8  | MSTEP @step 7   |                                           | 0.0~3000.0 | 50.0    |         |



| P13.9  | MSTEP @step 8                                  |                                                       | 0.0~3000.0       | 50.0        |         |
|--------|------------------------------------------------|-------------------------------------------------------|------------------|-------------|---------|
| P13.10 | MSTEP @step 9                                  |                                                       | 0.0~3000.0       | 50.0        |         |
| P13.11 | MSTEP @step 10                                 |                                                       | 0.0~3000.0       | 50.0        |         |
| P13.12 | MSTEP @step 11                                 |                                                       | 0.0~3000.0       | 50.0        |         |
| P13.13 | MSTEP @step 12                                 |                                                       | 0.0~3000.0       | 50.0        |         |
| P13.14 | MSTEP @step 13                                 |                                                       | 0.0~3000.0       | 50.0        |         |
| P13.15 | MSTEP @step 14                                 |                                                       | 0.0~3000.0       | 50.0        |         |
| P13.16 | MSTEP @step 15                                 |                                                       | 0.0~3000.0       | 50.0        |         |
| P13.17 | MSTEP @step 16                                 |                                                       | 0.0~3000.0       | 50.0        |         |
| P13.22 | Brake Release<br>@speed                        | Sets the brake release speed when in forward.         | 0.0~20.0<br>[%]  | 2.0<br>[%]  | See 8.8 |
| P13.23 | Brake Release<br>@Rev_Speed                    | Sets the brake release speed when in reverse.         | 0.0~20.0<br>[%]  | 0.0         | See 8.8 |
| P13.24 | Brake Release<br>@Torque                       | Sets the brake release torque when in forward         | 0.0~200.0<br>[%] | 30.0<br>[%] | See 8.8 |
| P13.25 | Brake Release<br>@Rev_Torque                   | Sets the brake release torque when in reverse.        | 0.0~200.0<br>[%] | 20.0<br>[%] | See 8.8 |
| P13.26 | Brake<br>Release_Ctrl<br>@Delay_time           |                                                       | 0.00~2.00<br>[s] | 0.00<br>[s] | See 8.8 |
| P13.27 | Brake<br>Release_Ctrl<br>@RevSpd<br>Delay_time |                                                       | 0.00~2.00<br>[s] | 0.00<br>[s] | See 8.8 |
| P13.28 | Brake Release<br>@Delay_time                   | Sets the delay time of brake release when in forward. | 0.00~2.00<br>[s] | 0.07<br>[s] | See 8.8 |
| P13.29 | Brake Release<br>@RevSpd<br>Delay_time         | Sets the delay time of brake release when in reverse. | 0.00~2.00<br>[s] | 0.07<br>[s] | See 8.8 |
| P13.32 | Brake Closure<br>@speed                        | Sets the brake closure speed when in forward.         | 0.0~20.0<br>[%]  | 0.0<br>[%]  | See 8.8 |
| P13.33 | Brake Closure<br>@Rev_Speed                    | Sets the brake closure speed when in reverse.         | 0.0~20.0<br>[%]  | 0.0<br>[%]  | See 8.8 |
| P13.34 | Brake Closure<br>@Delay_time                   | Sets the delay time of brake closure when in forward. | 0.00~2.00<br>[s] | 0.00<br>[s] | See 8.8 |
| P13.35 | Brake Closure<br>@Rev_Delay_time               | Sets the delay time of brake closure when in reverse. | 0.00~2.00<br>[s] | 0.00<br>[s] | See 8.8 |

| P13.36 | Brake Closure<br>@time     | Sets the brake closure time when in forward. | 0.00~2.00<br>[s] | 0.50<br>[s] | See 8.8 |
|--------|----------------------------|----------------------------------------------|------------------|-------------|---------|
| P13.37 | Brake Closure<br>@Rev_time | Sets the brake closure time when in reverse. | 0.00~2.00<br>[s] | 0.50<br>[s] | See 8.8 |

# 7.14 Motor 3 Step Speed Brake Set P14

| Par.NO  | Parameter Name  | Description                               | Range      | Default | Ref.    |
|---------|-----------------|-------------------------------------------|------------|---------|---------|
| P14.0   | Multi-step MODE | [0] Direct Step Input<br>[1] Bit Decoding | 0~1        | 1       | See 8.8 |
| P14.1   | Multi-step Unit | [0][%]<br>[1][Hz]<br>[2][rpm]             | 0~2        | 1       |         |
| P14.2   | MSTEP @step 1   |                                           | 0.0~3000.0 | 10.0    |         |
| P14.3   | MSTEP @step 2   |                                           | 0.0~3000.0 | 20.0    |         |
| P14.4   | MSTEP @step 3   |                                           | 0.0~3000.0 | 35.0    |         |
| P14.5   | MSTEP @step 4   |                                           | 0.0~3000.0 | 50.0    |         |
| P14.6   | MSTEP @step 5   |                                           | 0.0~3000.0 | 50.0    |         |
| P14.7   | MSTEP @step 6   |                                           | 0.0~3000.0 | 50.0    |         |
| P14.8   | MSTEP @step 7   |                                           | 0.0~3000.0 | 50.0    |         |
| P14.9   | MSTEP @step 8   |                                           | 0.0~3000.0 | 50.0    |         |
| P14.10  | MSTEP @step 9   |                                           | 0.0~3000.0 | 50.0    |         |
| P14.11  | MSTEP @step 10  |                                           | 0.0~3000.0 | 50.0    |         |
| P14.12  | MSTEP @step 11  |                                           | 0.0~3000.0 | 50.0    |         |
| P14.13  | MSTEP @step 12  |                                           | 0.0~3000.0 | 50.0    |         |
| P14.14  | MSTEP @step 13  |                                           | 0.0~3000.0 | 50.0    |         |
| P14.15  | MSTEP @step 14  |                                           | 0.0~3000.0 | 50.0    |         |
| P14.16  | MSTEP @step 15  |                                           | 0.0~3000.0 | 50.0    |         |
| P14.17  | MSTEP @step 16  |                                           | 0.0~3000.0 | 50.0    |         |
| P14 22  | Brake Release   | Sets the brake release speed              | 0.0~20.0   | 2.0     | See 8.8 |
| 1 17.22 | @speed          | when in forward.                          | [%]        | [%]     | 000 0.0 |
| P14.23  | Brake Release   | Sets the brake release speed              | 0.0~20.0   | 0.0     | See 8.8 |
|         | @Rev_Speed      | when in reverse.                          | [%]        | [%]     |         |
| P14.24  | Brake Release   | Sets the brake release torque             | 0.0~200.0  | 30.0    | See 8.8 |
| 1 14.24 | wiorque         | when in forward                           | [%]        | [%]     |         |



| D14.05  | Brake Release   | Sets the brake release torque | 0.0~200.0        | 20.0 |          |
|---------|-----------------|-------------------------------|------------------|------|----------|
| P14.25  | @Rev_Torque     | when in reverse.              | [%]              | [%]  | See 8.8  |
|         | Brake           |                               | $0.00 \sim 2.00$ | 0.00 |          |
| P14.26  | Release_Ctrl    |                               | 0.00 2.00        | 0.00 | See 8.8  |
|         | @Delay_time     |                               | [S]              | [S]  |          |
|         | Brake           |                               |                  |      |          |
| D14 27  | Release_Ctrl    |                               | 0.00~2.00        | 0.00 | Soo 8 8  |
| F 14.27 | @RevSpd         |                               | [s]              | [s]  | 566 0.0  |
|         | Delay_time      |                               |                  |      |          |
| D14 20  | Brake Release   | Sets the delay time of brake  | 0.00~2.00        | 0.07 | Sec. 9.9 |
| P14.28  | @Delay_time     | release when in forward.      | [s]              | [s]  | See 0.0  |
|         | Brake Release   | Sata the delay time of broke  | 0.00~2.00        | 0.07 |          |
| P14.29  | @RevSpd         | Sets the delay time of brake  | 0.00/ 2.00       | 0.07 | See 8.8  |
|         | Delay_time      | Telease when in reverse.      | [s]              | [s]  |          |
| D44.00  | Brake Closure   | Sets the brake closure speed  | 0.0~20.0         | 0.0  | See 8.8  |
| P14.32  | @speed          | when in forward.              | [%]              | [%]  |          |
|         | Brake Closure   | Sets the brake closure speed  | 0.0~20.0         | 0.0  |          |
| P14.33  | @Rev_Speed      | when in reverse.              | [%]              | [%]  | See 8.8  |
|         | Brake Closure   | Sets the delay time of brake  | 0.00~2.00        | 0.00 |          |
| P14.34  | @Delay_time     | closure when in forward.      | [s]              | [s]  | See 8.8  |
|         | Brake Closure   | Sets the delay time of brake  | 0.00~2.00        | 0.00 |          |
| P14.35  | @Rev_Delay_time | closure when in reverse.      | [s]              | [s]  | See 8.8  |
|         | Brake Closure   | Sets the brake closure time   | 0.00~2.00        | 0.50 |          |
| P14.36  | @time           | when in forward.              | [s]              | [s]  | See 8.8  |
|         |                 |                               |                  |      |          |
| P14.37  | Brake Closure   | Sets the brake closure time   | 0.00~2.00        | 0.50 | See 8.8  |
| 1 14.37 | @Rev_time       | when in reverse.              | [s]              | [s]  | 000 0.0  |

## 7.15 Motor 4 Step Speed Brake Set P15

| Par.NO | Parameter Name  | Description                               | Range      | Default | Ref.    |
|--------|-----------------|-------------------------------------------|------------|---------|---------|
| P15.0  | Multi-step MODE | [0] Direct Step Input<br>[1] Bit Decoding | 0~1        | 1       | See 8.8 |
| P15.1  | Multi-step Unit | [0][%]<br>[1][Hz]<br>[2][rpm]             | 0~2        | 1       |         |
| P15.2  | MSTEP @step 1   |                                           | 0.0~3000.0 | 10.0    |         |
| P15.3  | MSTEP @step 2   |                                           | 0.0~3000.0 | 20.0    |         |
| P15.4  | MSTEP @step 3   |                                           | 0.0~3000.0 | 35.0    |         |

| P15.5                      | MSTEP @step 4                                                                                                      |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
|----------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|-------------------------------|
| P15.6                      | MSTEP @step 5                                                                                                      |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.7                      | MSTEP @step 6                                                                                                      |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.8                      | MSTEP @step 7                                                                                                      |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.9                      | MSTEP @step 8                                                                                                      |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.10                     | MSTEP @step 9                                                                                                      |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.11                     | MSTEP @step 10                                                                                                     |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.12                     | MSTEP @step 11                                                                                                     |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.13                     | MSTEP @step 12                                                                                                     |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.14                     | MSTEP @step 13                                                                                                     |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.15                     | MSTEP @step 14                                                                                                     |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.16                     | MSTEP @step 15                                                                                                     |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| P15.17                     | MSTEP @step 16                                                                                                     |                                                                                                                                                                                                          | 0.0~3000.0                                                          | 50.0                                            |                               |
| D15 00                     | Brake Release                                                                                                      | Sets the brake release speed                                                                                                                                                                             | 0.0~20.0                                                            | 2.0                                             | See 8.8                       |
| P 15.22                    | @speed                                                                                                             | when in forward.                                                                                                                                                                                         | [%]                                                                 | [%]                                             |                               |
| P15.23                     | Brake Release                                                                                                      | Sets the brake release speed                                                                                                                                                                             | 0.0~20.0                                                            | 0.0                                             | See 8.8                       |
|                            | @Rev_Speed                                                                                                         | when in reverse.                                                                                                                                                                                         | [%]                                                                 | [%]                                             |                               |
| P15.24                     | Brake Release                                                                                                      | Sets the brake release torque                                                                                                                                                                            | 0.0~200.0                                                           | 30.0                                            | See 8.8                       |
|                            |                                                                                                                    | when in forward                                                                                                                                                                                          | [%]                                                                 | [%]                                             |                               |
| P15.25                     | Brake Release                                                                                                      | Sets the brake release torque                                                                                                                                                                            | 0.0~200.0                                                           | 20.0                                            | See 8.8                       |
|                            | Brake                                                                                                              |                                                                                                                                                                                                          | [%]                                                                 | [%]                                             |                               |
| P15.26                     | Release Ctrl                                                                                                       |                                                                                                                                                                                                          | 0.00~2.00                                                           | 0.00                                            | See 8.8                       |
|                            | <br>@Delay_time                                                                                                    |                                                                                                                                                                                                          | [s]                                                                 | [s]                                             |                               |
| P15.27                     | Brake                                                                                                              |                                                                                                                                                                                                          |                                                                     |                                                 |                               |
|                            | Release_Ctrl                                                                                                       |                                                                                                                                                                                                          | 0.00~2.00                                                           | 0.00                                            | See 8.8                       |
|                            | @RevSpd                                                                                                            |                                                                                                                                                                                                          | [s]                                                                 | [s]                                             |                               |
|                            |                                                                                                                    |                                                                                                                                                                                                          |                                                                     |                                                 |                               |
|                            | Brake Release                                                                                                      | Sets the delay time of brake                                                                                                                                                                             | 0.00~2.00                                                           | 0.07                                            |                               |
| P15.28                     | Brake Release<br>@Delay_time                                                                                       | Sets the delay time of brake release when in forward.                                                                                                                                                    | 0.00~2.00<br>[s]                                                    | 0.07<br>[s]                                     | See 8.8                       |
| P15.28                     | Brake Release<br>@Delay_time<br>Brake Release                                                                      | Sets the delay time of brake<br>release when in forward.                                                                                                                                                 | 0.00~2.00<br>[s]                                                    | 0.07<br>[s]                                     | See 8.8                       |
| P15.28<br>P15.29           | Brake Release<br>@Delay_time<br>Brake Release<br>@RevSpd                                                           | Sets the delay time of brake<br>release when in forward.<br>Sets the delay time of brake<br>release when in reverse.                                                                                     | 0.00~2.00<br>[s]<br>0.00~2.00<br>[s]                                | 0.07<br>[s]<br>0.07<br>[s]                      | See 8.8<br>See 8.8            |
| P15.28<br>P15.29           | Brake Release<br>@Delay_time<br>Brake Release<br>@RevSpd<br>Delay_time                                             | Sets the delay time of brake<br>release when in forward.<br>Sets the delay time of brake<br>release when in reverse.                                                                                     | 0.00~2.00<br>[s]<br>0.00~2.00<br>[s]                                | 0.07<br>[s]<br>0.07<br>[s]                      | See 8.8<br>See 8.8            |
| P15.28<br>P15.29<br>P15.32 | Brake Release<br>@Delay_time<br>Brake Release<br>@RevSpd<br>Delay_time<br>Brake Closure<br>@speed                  | Sets the delay time of brake<br>release when in forward.<br>Sets the delay time of brake<br>release when in reverse.<br>Sets the brake closure speed<br>when in forward.                                 | 0.00~2.00<br>[s]<br>0.00~2.00<br>[s]<br>0.0~20.0<br>[%]             | 0.07<br>[s]<br>0.07<br>[s]<br>0.0<br>[%]        | See 8.8<br>See 8.8<br>See 8.8 |
| P15.28<br>P15.29<br>P15.32 | Brake Release<br>@Delay_time<br>Brake Release<br>@RevSpd<br>Delay_time<br>Brake Closure<br>@speed<br>Brake Closure | Sets the delay time of brake<br>release when in forward.<br>Sets the delay time of brake<br>release when in reverse.<br>Sets the brake closure speed<br>when in forward.<br>Sets the brake closure speed | 0.00~2.00<br>[s]<br>0.00~2.00<br>[s]<br>0.0~20.0<br>[%]<br>0.0~20.0 | 0.07<br>[s]<br>0.07<br>[s]<br>0.0<br>[%]<br>0.0 | See 8.8<br>See 8.8<br>See 8.8 |



| P15.34 | Brake Closure<br>@Delay_time     | Sets the delay time of brake closure when in forward. | 0.00~2.00<br>[s] | 0.00<br>[s] | See 8.8 |
|--------|----------------------------------|-------------------------------------------------------|------------------|-------------|---------|
| P15.35 | Brake Closure<br>@Rev_Delay_time | Sets the delay time of brake closure when in reverse. | 0.00~2.00<br>[s] | 0.00<br>[s] | See 8.8 |
| P15.36 | Brake Closure<br>@time           | Sets the brake closure time when in forward.          | 0.00~2.00<br>[s] | 0.50<br>[s] | See 8.8 |
| P15.37 | Brake Closure<br>@Rev_time       | Sets the brake closure time when in reverse.          | 0.00~2.00<br>[s] | 0.50<br>[s] | See 8.8 |

# 7.16 Motor 1 Parameter V/F Set P16

| Par.NO | Parameter Name            | Description                                                                                                                                                                         | Range               | Default                    | Ref.    |
|--------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|---------|
| P16.0  | Supply Voltage            | Sets the supply voltage.                                                                                                                                                            | 320~460<br>[V]      | 380<br>[V]                 |         |
| P16.2  | Nominal Power             | Sets parameter based on motor nameplate                                                                                                                                             | 0.0~4000.0<br>[kW]  | Model<br>dependent<br>[kW] |         |
| P16.3  | Nominal Voltage           | Sets parameter based on motor nameplate                                                                                                                                             | 320~460<br>[V]      | 380<br>[V]                 |         |
| P16.4  | Nominal Current           | Sets parameter based on motor nameplate                                                                                                                                             | 0.0~6500.0<br>[A]   | Model<br>dependent<br>[A]  |         |
| P16.5  | Nominal Frequency         | Sets parameter based on motor nameplate                                                                                                                                             | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]               |         |
| P16.6  | Nominal Speed             | Sets parameter based on motor nameplate                                                                                                                                             | 0~6000<br>[rpm]     | 1465<br>[rpm]              |         |
| P16.7  | Number of Poles           | Sets parameter based on motor nameplate                                                                                                                                             | 2∼12<br>[pole]      | 4<br>[pole]                | See 8.9 |
| P16.9  | Synchronous Speed         | Sets parameter based on motor nameplate                                                                                                                                             | 0~7200<br>[rpm]     | 1500<br>[rpm]              | See 8.9 |
| P16.11 | Basic Control<br>Function | <ul> <li>[0] V/F</li> <li>[1] S/L Vector Control</li> <li>[2] CL Vector Control</li> <li>[3] Line Converter Control</li> <li>(AFE)</li> <li>[4] Line Active Power Filter</li> </ul> | 0~4                 | 0                          |         |
| P16.12 | PWM @Carrier<br>Frequency | Sets the carrier frequency.                                                                                                                                                         | 1.00~10.00<br>[kHz] | 3.00<br>[kHz]              | See 8.9 |
| P16.14 | V/F Curve Pattern         | [0]Linear Curve V/F<br>[1] Multi-point Curve V/F<br>[2] Square Curve V/F                                                                                                            | 0~3                 | 0                          | See 8.9 |



 $\label{eq:please} Please \ visit \ the \ official \ website \ for \ more \ information: \ www.guide-edrive.com$
| P16.15 | Torque<br>Compensation                            | [0] Disabled<br>[1] Enabled                                                       | 0~1                 | 0             | See 8.9 |
|--------|---------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|---------------|---------|
| P16.16 | Torque                                            | Sets torque compensation                                                          | 2∼500<br>[mo]       | 500           |         |
|        | Compensation Time                                 | time                                                                              | ព្រទេ្យ             | luisi         |         |
| P16.17 | V/F Control Mode                                  | [0] V/F Frequency Control<br>[1] Slip Compensated<br>Speed Control                | 0~1                 | 0             |         |
|        | Slip Compensation                                 | Sets the slip compensation                                                        | 10~1000             | 200           |         |
| P16.18 | Time                                              | time.                                                                             | [ms]                | [ms]          |         |
|        | Stator Resistance                                 | [0]Online                                                                         |                     |               |         |
| P16.19 |                                                   |                                                                                   | 0∼1                 | 0             |         |
|        | Auto-Tuning Option                                |                                                                                   |                     |               |         |
| P16.22 | Delay Time<br>@START                              | Sets the delay time at start.                                                     | 0.00~100.00<br>[s]  | 0.00<br>[s]   | See 8.9 |
| P16.23 | Min. Frequency                                    | Sets the minimum<br>frequency(valid only when<br>running in V/F control<br>mode). | 0.00~300.00<br>[Hz] | 0.00<br>[Hz]  |         |
| P16.24 | Max. Frequency                                    | Sets the maximum<br>frequency(valid only when<br>running in V/F control<br>mode). | 0.00~300.00<br>[Hz] | 50.00<br>[Hz] |         |
|        | Max. Modulation                                   | Sets the maximum                                                                  | 0.0~120.0           | 100.0         |         |
| P16.25 | Ratio                                             | modulation ratio.                                                                 | [%]                 | [%]           |         |
| P16.26 | V/F DC offset                                     | Sets the V/F DC offset at start.                                                  | 0.00~10.00<br>[%]   | 0.75<br>[%]   | See 8.9 |
| P16.27 | Nominal Frequency<br>Voltage                      | Sets the output voltage at nominal frequency.                                     | 0.0~200.0<br>[%]    | 100.0<br>[%]  | See 8.9 |
| P16.30 | Square Curve<br>Voltage<br>Compensation<br>@START | Sets the square curve<br>voltage compensation at<br>start.                        | 0.0~100.0<br>[%]    | 0.0<br>[%]    | See 8.9 |
| P16.33 | Number of V/F points                              | Sets the number of V/F points                                                     | 0~6                 | 2             | See 8.9 |
| P16.34 | V/F point @F1                                     |                                                                                   | 0.0~300.0<br>[Hz]   | 5.0<br>[Hz]   |         |
| P16.35 | V/F point @V1                                     |                                                                                   | 0.0~125.0<br>[%]    | 11.5<br>[%]   |         |
| P16.36 | V/F point @F2                                     |                                                                                   | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]  |         |
| P16.37 | V/F point @V2                                     |                                                                                   | 0.0~125.0<br>[%]    | 100.0<br>[%]  |         |



| P16.38  | V/F point @F3     |                              | 0.0~300.0          | 50.0          |          |
|---------|-------------------|------------------------------|--------------------|---------------|----------|
|         |                   |                              | [Hz]               | [Hz]          |          |
| P16.39  | V/F point @V3     |                              | $0.0 \sim 125.0$   | 100.0         |          |
|         |                   |                              |                    | [%]           |          |
| P16.40  | V/F point @F4     |                              | 0.0~300.0          | 50.0          |          |
|         |                   |                              |                    |               |          |
| P16.41  | V/F point @V4     |                              | 0.0~125.0          | 100.0         |          |
|         |                   |                              |                    | [%]           |          |
| P16.42  | V/F point @F5     |                              | 0.0~300.0          | 0.UC          |          |
|         |                   |                              |                    | [□2]          |          |
| P16.43  | V/F point @V5     |                              | 0.0~125.0          | 100.0         |          |
|         |                   |                              |                    | [%]           |          |
| P16.44  | V/F point @F6     |                              | 0.0~300.0          | 50.0          |          |
|         |                   |                              |                    | [⊓∠]<br>100.0 |          |
| P16.45  | V/F point @V6     |                              | 0.0~125.0          | 100.0         |          |
|         |                   |                              | [%]                | [%]           |          |
| P16.46  |                   |                              | 0~300              | 0             |          |
|         | @FREE_BLOCK       |                              |                    |               |          |
| P16 47  | Voltage_ADJ       |                              | 0~300              | 0             |          |
|         | @FREE_BLOCK       |                              |                    | -             |          |
|         |                   | [0]DISABLE                   |                    |               |          |
| D16 40  | Fraguanay Adi SPC | [1] PID BLOCK 1              | ი~3                | 0             |          |
| P16.48  |                   | [2] PID BLOCK 2              | 0.3                | 0             |          |
|         |                   | [3] FREE BLOCK               |                    |               |          |
|         | Frequency_ADJ     |                              | 0 000              | 0             |          |
| P16.49  | @FREE BLOCK       | 0~300                        | 0~300              | 0             |          |
|         | START DC Braking  | Sets the time of             | 0.00~300.00        | 0.00          |          |
| P16.50  | @time             | START DC Braking.            | [s]                | [s]           | See 8.9  |
|         | START DC Braking  | Sets the current of          | 0.0~150.0          | 70.0          |          |
| P16.51  | @current          | START DC Braking             | [%]                | [%]           | See 8.9  |
|         | START DC Braking  | Sets the frequency of        |                    | 0.00          |          |
| P16.52  | @fraguanay        | START DC Broking             | 0.00°-3.00         | 0.00<br>[Ц-]  | See 8.9  |
|         |                   |                              |                    |               |          |
| P16.54  | STOP_DC_Braking   |                              | $0.00 \sim 300.00$ | 0.00          | See 8.9  |
|         | @time             | STOP_DC_Braking.             | [S]                | [S]           |          |
| P16 55  | STOP_DC_Braking   | Sets the current of          | 0.0~150.0          | 75.0          | See 8.9  |
| 1 10.00 | @current          | STOP_DC_Braking.             | [%]                | [%]           | 000 0.0  |
|         | STOP_DC_Braking   | Sets the frequency of        | 0.00~5.00          | 0.00          | Sec. 9.0 |
| P10.00  | @frequency        | STOP_DC_Braking.             | [Hz]               | [Hz]          | See 6.9  |
|         |                   | Sets over currentprotection  | 0.0~1000.0         | 100.0         |          |
| P16.59  | Kp_OC_Protection  | Ratio                        | [%]                | [%]           |          |
|         |                   |                              |                    |               |          |
| P16 60  | Ki OC Protection  | Sets over current protection | 0.0~1000.0         | 100.0         |          |
| 1 10.00 |                   | integral                     | [%]                | [%]           |          |



| P16.61 | Kp_OV_Limiter               | Sets over voltage<br>protection Ratio    | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
|--------|-----------------------------|------------------------------------------|-------------------|--------------|---------|
| P16.62 | Ki_OV_Limiter               | Sets over voltage<br>protection integral | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P16.64 | V/F Stabilization<br>@Gain  | Sets the gain of V/F<br>stabilization.   | 0.0~1000.0<br>[%] | 100.0<br>[%] | See 8.9 |
| P16.66 | V/F Stabilization<br>@Limit | Sets the limit of V/F stabilization.     | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P16.67 | Start DC Brake Ratio        | Sets start DC brake Ratio                | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P16.68 | Start DC Brake<br>Integral  | Sets start DC brake integral             | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P16.69 | Stop DC Brake Ratio         | Sets stop DC brake Ratio                 | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P16.70 | Stop DC Brake<br>Integral   | Sets stop DC brake integral              | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |

# 7.17 Motor 2 Parameter V/F Set P17

| Par.NO | Parameter Name             | Description                             | Range              | Default                    | Ref.    |
|--------|----------------------------|-----------------------------------------|--------------------|----------------------------|---------|
| P17.0  | Supply Voltage             | Sets based on actual supply voltage     | 320~460<br>[V]     | 380<br>[V]                 |         |
| P17.2  | Nominal Power              | Sets parameter based on motor nameplate | 0.0~4000.0<br>[kW] | Model<br>dependent<br>[kW] |         |
| P17.3  | Nominal Voltage            | Sets parameter based on motor nameplate | 320~460<br>[V]     | 380<br>[V]                 |         |
| P17.4  | Nominal Current            | Sets parameter based on motor nameplate | 0.0~6500.0<br>[A]  | Model<br>dependent<br>[A]  |         |
| P17.5  | Nominal Frequency          | Sets parameter based on motor nameplate | 0.0~300.0<br>[Hz]  | 50.0<br>[Hz]               |         |
| P17.6  | Nominal Speed              | Sets parameter based on motor nameplate | 0~6000<br>[rpm]    | 1465<br>[rpm]              |         |
| P17.7  | Number of Poles            | Sets parameter based on motor nameplate | 2~12<br>[pole]     | 4<br>[pole]                | See 8.9 |
| P17.9  | Motor Synchronous<br>Speed | Sets parameter based on motor nameplate | 0~7200<br>[rpm]    | 1500<br>[rpm]              | See 8.9 |

Please visit the official website for more information: www.guide-edrive.com

7



| P17.11 | Basic Control<br>Function                         | <ul> <li>[0] V/F</li> <li>[1] S/L Vector Control</li> <li>[2] CL Vector Control</li> <li>[3] Line Converter Control</li> <li>(AFE)</li> <li>[4] Line Active Power Filter</li> </ul> | 0~4                 | 0             |         |
|--------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|---------|
| P17.12 | PWM @Carrier<br>Frequency                         | Sets the carrier frequency.                                                                                                                                                         | 1.00~10.00<br>[kHz] | 3.00<br>[kHz] | See 8.9 |
| P17.14 | V/FCurve Pattern                                  | [0] Linear Curve V/F<br>[1] Multi-point Curve V/F<br>[2] Square Curve V/F                                                                                                           | 0~3                 | 0             | See 8.9 |
| P17.15 | Torque<br>Compensation                            | [0] Disabled<br>[1] Enabled                                                                                                                                                         | 0~1                 | 0             | See 8.9 |
| P17.16 | Torque<br>Compensation Time                       | Sets torque compensation time                                                                                                                                                       | 2~500<br>[ms]       | 500<br>[ms]   |         |
| P17.17 | V/F Control Mode                                  | [0] V/F Frequency Control<br>[1] Slip Compensated<br>Speed Control                                                                                                                  | 0~1                 | 0             |         |
| P17.18 | Slip Compensation<br>Time                         | Sets the slip compensation time.                                                                                                                                                    | 10∼1000<br>[ms]     | 200<br>[ms]   |         |
| P17.19 | Stator Resistance<br>Auto-Tuning Option           | [0]Online<br>[1]Offline                                                                                                                                                             | 0~1                 | 0             |         |
| P17.22 | Delay Time<br>@START                              | Sets the delay time at start.                                                                                                                                                       | 0.00~100.00<br>[s]  | 0.00<br>[s]   | See 8.9 |
| P17.23 | Min. Frequency                                    | Sets the minimum<br>frequency(valid only when<br>running in V/F control<br>mode).                                                                                                   | 0.00~300.00<br>[Hz] | 0.00<br>[Hz]  |         |
| P17.24 | Max. Frequency                                    | Sets the maximum<br>frequency(valid only when<br>running in V/F control<br>mode).                                                                                                   | 0.00~300.00<br>[Hz] | 50.00<br>[Hz] |         |
| P17.25 | Max. Modulation<br>Ratio                          | Sets the maximum modulation ratio.                                                                                                                                                  | 0.0~120.0<br>[%]    | 100.0<br>[%]  |         |
| P17.26 | V/F DC offset                                     | Sets the V/F DC offset at start.                                                                                                                                                    | 0.00~10.00<br>[%]   | 0.75<br>[%]   | See 8.9 |
| P17.27 | Nominal Frequency<br>Voltage                      | Sets the output voltage at nominal frequency.                                                                                                                                       | 0.0~200.0<br>[%]    | 100.0<br>[%]  | See 8.9 |
| P17.30 | Square Curve<br>Voltage<br>Compensation<br>@START | Sets the square curve<br>voltage compensation at<br>start.                                                                                                                          | 0.0~100.0<br>[%]    | 0.0<br>[%]    | See 8.9 |



7



Please visit the official website for more information: www.guide-edrive.com

| P17.33  | Number of V/F points         | Sets the number of V/F                           | 0~6                    | 2             | See 8.9 |
|---------|------------------------------|--------------------------------------------------|------------------------|---------------|---------|
|         |                              | points                                           | 0.0~300.0              | 5.0           |         |
| P17.34  | V/F point @F1                |                                                  | 0.0 300.0              | 5.0<br>[Hz]   |         |
|         |                              |                                                  | 0.0~125.0              | 11.5          |         |
| P17.35  | V/F point @V1                |                                                  | [%]                    | [%]           |         |
|         |                              |                                                  | 0.0~300.0              | 50.0          |         |
| P17.36  | V/F point @F2                |                                                  | [Hz]                   | [Hz]          |         |
|         |                              |                                                  | 0.0~125.0              | 100.0         |         |
| P17.37  | V/F point @V2                |                                                  | [%]                    | [%]           |         |
| D47.00  | V/E point @E2                |                                                  | 0.0~300.0              | 50.0          |         |
| P17.38  | V/F point @F3                |                                                  | [Hz]                   | [Hz]          |         |
| D17 20  | V/E point @V/3               |                                                  | 0.0~125.0              | 100.0         |         |
| P17.39  |                              |                                                  | [%]                    | [%]           |         |
| P17 /0  | V/F point @F4                |                                                  | 0.0~300.0              | 50.0          |         |
| 1 17.40 |                              |                                                  | [Hz]                   | [Hz]          |         |
| P17 41  | V/F point @V4                |                                                  | 0.0~125.0              | 100.0         |         |
| 1 17.41 |                              |                                                  | [%]                    | [%]           |         |
| P17 42  | V/F point @F5                |                                                  | 0.0~300.0              | 50.0          |         |
|         |                              |                                                  | [Hz]                   | [Hz]          |         |
| P17.43  | V/F point @V5                |                                                  | 0.0~125.0              | 100.0         |         |
|         |                              |                                                  | [%]                    | [%]           |         |
| P17.44  | V/F point @F6                |                                                  | 0.0~300.0              | 50.0          |         |
|         |                              |                                                  | [□2]                   | [⊓∠]<br>100.0 |         |
| P17.45  | V/F point @V6                |                                                  | 0.0 <sup>°</sup> 125.0 | 100.0<br>[%]  |         |
|         |                              |                                                  | [70]                   | [/0]          |         |
| P17.46  | @FREE BLOCK                  |                                                  | 0~300                  | 0             |         |
| P17 47  | Voltage_ADJ                  |                                                  | 0~300                  | 0             |         |
|         | @FREE_BLOCK                  |                                                  |                        |               |         |
| P17.48  | Frequency_Adj_SRC            | [0]DISABLE<br>[1] PID BLOCK 1<br>[2] PID BLOCK 2 | 0~3                    | 0             |         |
|         |                              | [3] FREE BLOCK                                   |                        |               |         |
| P17.49  | Frequency_ADJ<br>@FREE_BLOCK |                                                  | 0~300                  | 0             |         |
| D47 50  | START_DC_Braking             | Sets the time of                                 | 0.00~300.00            | 0.00          | 0 0 0   |
| P17.50  | @time                        | START_DC_Braking.                                | [s]                    | [s]           | See 8.9 |
|         | START_DC_Braking             | Sets the current of                              | 0.0~150.0              | 70.0          | 0. 0.0  |
| P17.51  | @current                     | START_DC_Braking.                                | [%]                    | [%]           | See 8.9 |
| D47 50  | START_DC_Braking             | Sets the frequency of                            | 0.00~5.00              | 0.00          | 0 0 0   |
| P17.52  | @frequency                   | START_DC_Braking.                                | [Hz]                   | [Hz]          | See 8.9 |
|         | STOP_DC_Braking              | Sets the time of                                 | 0.00~300.00            | 0.00          |         |
| P17.54  | @time                        | STOP_DC_Braking.                                 | [s]                    | [s]           | See 8.9 |

7

 $\label{eq:Please visit the official website for more information: www.guide-edrive.com$ 



| P17.55 | STOP_DC_Braking<br>@current   | Sets the current of STOP_DC_Braking.                            | 0.0~150.0<br>[%]  | 75.0<br>[%]  | See 8.9 |
|--------|-------------------------------|-----------------------------------------------------------------|-------------------|--------------|---------|
| P17.56 | STOP_DC_Braking<br>@frequency | Sets the frequency of STOP_DC_Braking.                          | 0.00~5.00<br>[Hz] | 0.00<br>[Hz] | See 8.9 |
| P17.59 | Kp_OC_Protection              | Sets OC_Protection ratio                                        | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P17.60 | Ki_OC_Protection              | Sets OC_Protection                                              | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P17.61 | Kp_OV_Limiter                 | Sets OV_limiter ratio                                           | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P17.62 | Ki_OV_Limiter                 | Sets OV_limiter integral                                        | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P17.64 | V/F Stabilization<br>@Gain    | Sets the gain of V/F stabilization.                             | 0.0~1000.0<br>[%] | 100.0<br>[%] | See 8.9 |
| P17.66 | K_CL_Ctrl                     | Sets the ratio of current<br>limit loop in V/F control<br>mode. | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P17.67 | Start DC Brake Ratio          | Sets start DC brake Ratio                                       | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P17.68 | Start DC Brake<br>Integral    | Sets start DC brake integral                                    | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P17.69 | Stop DC Brake Ratio           | Sets stop DC brake Ratio                                        | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |
| P17.70 | Stop DC Brake<br>Integral     | Sets stop DC brake integral                                     | 0.0~1000.0<br>[%] | 100.0<br>[%] |         |

## 7.18 Motor 3 Parameter V/F Set P18

| Par.NO | Parameter Name  | Description                             | Range              | Default                    | Ref. |
|--------|-----------------|-----------------------------------------|--------------------|----------------------------|------|
| P18.0  | Supply Voltage  | Sets based on actual supply voltage     | 320~460<br>[V]     | 380<br>[V]                 |      |
| P18.2  | Nominal Power   | Sets parameter based on motor nameplate | 0.0~4000.0<br>[kW] | Model<br>dependent<br>[kW] |      |
| P18.3  | Nominal Voltage | Sets parameter based on motor nameplate | 320~460<br>[V]     | 380<br>[V]                 |      |
| P18.4  | Nominal Current | Sets parameter based on motor nameplate | 0.0~6500.0<br>[A]  | Model<br>dependent<br>[A]  |      |

| P18.5  | Nominal Frequency                       | Sets parameter based on motor nameplate                                                                                                                                             | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]  |         |
|--------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|---------|
| P18.6  | Nominal Speed                           | Sets parameter based on motor nameplate                                                                                                                                             | 0~6000<br>[rpm]     | 1465<br>[rpm] |         |
| P18.7  | Number of Poles                         | Sets parameter based on motor nameplate                                                                                                                                             | 2~12<br>[pole]      | 4<br>[pole]   | See 8.9 |
| P18.9  | Motor Synchronous<br>Speed              | Sets parameter based on motor nameplate                                                                                                                                             | 0~7200<br>[rpm]     | 1500<br>[rpm] | See 8.9 |
| P18.11 | Basic Control<br>Function               | <ul> <li>[0] V/F</li> <li>[1] S/L Vector Control</li> <li>[2] CL Vector Control</li> <li>[3] Line Converter Control</li> <li>(AFE)</li> <li>[4] Line Active Power Filter</li> </ul> | 0~4                 | 0             |         |
| P18.12 | PWM @Carrier<br>Frequency               | Sets the carrier frequency.                                                                                                                                                         | 1.00~10.00<br>[kHz] | 3.00<br>[kHz] | See 8.9 |
| P18.14 | V/F Curve Pattern                       | [0]Linear Curve V/F<br>[1] Multi-point Curve V/F<br>[2] Square Curve V/F                                                                                                            | 0~3                 | 0             | See 8.9 |
| P18.15 | Torque<br>Compensation                  | [0] Disabled<br>[1] Enabled                                                                                                                                                         | 0~1                 | 0             | See 8.9 |
| P18.16 | Torque<br>Compensation Time             | Sets torque compensation time                                                                                                                                                       | 2∼500<br>[ms]       | 500<br>[ms]   |         |
| P18.17 | V/F Control Mode                        | [0] V/F Frequency Control<br>[1] Slip Compensated<br>Speed Control                                                                                                                  | 0~1                 | 0             |         |
| P18.18 | Slip Compensation<br>Time               | Sets the slip compensation time.                                                                                                                                                    | 10~1000<br>[ms]     | 200<br>[ms]   |         |
| P18.19 | Stator Resistance<br>Auto-Tuning Option | [0]Online<br>[1]Offline                                                                                                                                                             | 0~1                 | 0             |         |
| P18.22 | Delay Time<br>@START                    | Sets the delay time at start.                                                                                                                                                       | 0.00~100.00<br>[s]  | 0.00<br>[s]   | See 8.9 |
| P18.23 | Min. Frequency                          | Sets the minimum<br>frequency(valid only when<br>running in V/F control<br>mode).                                                                                                   | 0.00~300.00<br>[Hz] | 0.00<br>[Hz]  |         |
| P18.24 | Max. Frequency                          | Sets the maximum<br>frequency(valid only when<br>running in V/F control<br>mode).                                                                                                   | 0.00~300.00<br>[Hz] | 50.00<br>[Hz] |         |

| P18 25                  | Max. Modulation                                   | Sets the maximum                                           | 0.0~120.0        | 100.0      |          |
|-------------------------|---------------------------------------------------|------------------------------------------------------------|------------------|------------|----------|
| 1 10.20                 | Ratio                                             | modulation ratio.                                          | [%]              | [%]        |          |
| P18 26                  | V/F DC offset                                     | Sets the V/F DC offset at                                  | 0.00~10.00       | 0.75       | See 8.9  |
| 1 10.20                 |                                                   | start.                                                     | [%]              | [%]        | 000 0.0  |
| D10 27                  | Nominal Frequency                                 | Sets the output voltage at                                 | 0.0~200.0        | 100.0      | Sec. 9.0 |
| P10.21                  | Voltage                                           | nominal frequency.                                         | [%]              | [%]        | See 0.9  |
| P18.30                  | Square Curve<br>Voltage<br>Compensation<br>@START | Sets the square curve<br>voltage compensation at<br>start. | 0.0~100.0<br>[%] | 0.0<br>[%] | See 8.9  |
| P18.33                  | Number of V/F points                              | Sets the number of V/F points                              | 0~6              | 2          | See 8.9  |
| D40.04                  | V/E point @E1                                     |                                                            | 0.0~300.0        | 5.0        |          |
| P18.34                  | v/r point@r1                                      |                                                            | [Hz]             | [Hz]       |          |
| <b>D</b> 40.05          | $V/\Gamma$ is a single $\Theta V/4$               |                                                            | 0.0~125.0        | 11.5       |          |
| P18.35                  | V/F point @V1                                     |                                                            | [%]              | [%]        |          |
| <b>D</b> 40.00          |                                                   |                                                            | 0.0~300.0        | 50.0       |          |
| P18.36                  | V/F point @F2                                     |                                                            | [Hz]             | [Hz]       |          |
| <b>D</b> 4 0 0 <b>D</b> |                                                   |                                                            | 0.0~125.0        | 100.0      |          |
| P18.37                  | V/F point @V2                                     |                                                            | [%]              | [%]        |          |
| <b>D</b> 40.00          |                                                   |                                                            | 0.0~300.0        | 50.0       |          |
| P18.38                  | V/F point @F3                                     |                                                            | [Hz]             | [Hz]       |          |
| D40.00                  | $V/E$ point $\Theta V/2$                          |                                                            | 0.0~125.0        | 100.0      |          |
| P18.39                  |                                                   |                                                            | [%]              | [%]        |          |
| D10 10                  | V/E point @E4                                     |                                                            | 0.0~300.0        | 50.0       |          |
| P 10.40                 |                                                   |                                                            | [Hz]             | [Hz]       |          |
| D10 /1                  | V/E point @V/4                                    |                                                            | 0.0~125.0        | 100.0      |          |
| F 10.41                 |                                                   |                                                            | [%]              | [%]        |          |
| D10 12                  | V/E point @E5                                     |                                                            | 0.0~300.0        | 50.0       |          |
| F 10.42                 |                                                   |                                                            | [Hz]             | [Hz]       |          |
| D10 /2                  | V/E point @V/5                                    |                                                            | 0.0~125.0        | 100.0      |          |
| F 10.43                 |                                                   |                                                            | [%]              | [%]        |          |
| D18 //                  | V/E point @E6                                     |                                                            | 0.0~300.0        | 50.0       |          |
| F 10.44                 |                                                   |                                                            | [Hz]             | [Hz]       |          |
| P18 /5                  | V/E point @V6                                     |                                                            | 0.0~125.0        | 100.0      |          |
| 1 10.40                 |                                                   |                                                            | [%]              | [%]        |          |
| P18 /6                  | V/F Curve                                         |                                                            | 0~300            | 0          |          |
| F 10.40                 | @FREE_BLOCK                                       |                                                            | 0 000            | Ū          |          |
| D10 47                  | Voltage_ADJ                                       |                                                            | 0~300            | Ο          |          |
| r 10.47                 | @FREE_BLOCK                                       |                                                            | 0 300            | 0          |          |
|                         |                                                   | [0]DISABLE                                                 |                  |            |          |
| P18.48                  | Frequency_Adj_SRC                                 | [1] PID BLOCK 1<br>[2] PID BLOCK 2<br>[3] FREE BLOCK       | 0~3              | 0          |          |

Please visit the official website for more information: www.guide-edrive.com

| P18.49 | Frequency_ADJ<br>@FREE_BLOCK   |                                                                 | 0~300              | 0            |         |
|--------|--------------------------------|-----------------------------------------------------------------|--------------------|--------------|---------|
| P18.50 | START_DC_Braking<br>@time      | Sets the time of<br>START DC Braking.                           | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.9 |
| P18.51 | START_DC_Braking<br>@current   | Sets the current of START_DC_Braking.                           | 0.0~150.0<br>[%]   | 70.0<br>[%]  | See 8.9 |
| P18.52 | START_DC_Braking<br>@frequency | Sets the frequency of START_DC_Braking.                         | 0.00~5.00<br>[Hz]  | 0.00<br>[Hz] | See 8.9 |
| P18.54 | STOP_DC_Braking<br>@time       | Sets the time of STOP_DC_Braking.                               | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.9 |
| P18.55 | STOP_DC_Braking<br>@current    | Sets the current of<br>STOP_DC_Braking.                         | 0.0~150.0<br>[%]   | 75.0<br>[%]  | See 8.9 |
| P18.56 | STOP_DC_Braking<br>@frequency  | Sets the frequency of<br>STOP_DC_Braking.                       | 0.00~5.00<br>[Hz]  | 0.00<br>[Hz] | See 8.9 |
| P18.59 | OC_Protection Ratio<br>Gain    | Sets OC_Protection ratio                                        | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P18.60 | OC_Protection<br>Integral Gain | Sets OC_Protection                                              | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P18.61 | OV_Limit Ratio                 | Sets OV_Limit ratio                                             | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P18.62 | OV_Limit Integral              | Sets OV_Limit integral                                          | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P18.64 | V/F Stabilization<br>@Gain     | Sets the gain of V/F stabilization.                             | 0.0~1000.0<br>[%]  | 100.0<br>[%] | See 8.9 |
| P18.66 | Current Limit Ratio<br>Gain    | Sets the ratio of current<br>limit loop in V/F control<br>mode. | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P18.67 | Start DC Brake Ratio           | Sets start DC brake Ratio                                       | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P18.68 | Start DC Brake<br>Integral     | Sets start DC brake integral                                    | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P18.69 | Stop DC Brake Ratio            | Sets stop DC brake Ratio                                        | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P18.70 | Stop DC Brake<br>Integral      | Sets stop DC brake integral                                     | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |

#### 7.19 Motor 4 Parameter V/F Set P19

| Par.NO Parameter Name Description Range Default Ref. |
|------------------------------------------------------|
|------------------------------------------------------|

Please visit the official website for more information: www.guide-edrive.com

| P19.0  | Supply Voltage                          | Sets based on actual supply voltage                                                                                                                                                 | 320~460<br>[V]      | 380<br>[V]                 |         |
|--------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|---------|
| P19.2  | Nominal Power                           | Sets parameter based on motor nameplate                                                                                                                                             | 0.0~4000.0<br>[kW]  | Model<br>dependent<br>[kW] |         |
| P19.3  | Nominal Voltage                         | Sets parameter based on motor nameplate                                                                                                                                             | 320~460<br>[V]      | 380<br>[V]                 |         |
| P19.4  | Nominal Current                         | Sets parameter based on motor nameplate                                                                                                                                             | 0.0~6500.0<br>[A]   | Model<br>dependent<br>[A]  |         |
| P19.5  | Nominal Frequency                       | Sets parameter based on motor nameplate                                                                                                                                             | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]               |         |
| P19.6  | Nominal Speed                           | Sets parameter based on motor nameplate                                                                                                                                             | 0~6000<br>[rpm]     | 1465<br>[rpm]              |         |
| P19.7  | Number of Poles                         | Sets parameter based on motor nameplate                                                                                                                                             | 2∼12<br>[pole]      | 4<br>[pole]                | See 8.9 |
| P19.9  | Motor Synchronous<br>Speed              | Sets parameter based on motor nameplate                                                                                                                                             | 0∼7200<br>[rpm]     | 1500<br>[rpm]              | See 8.9 |
| P19.11 | Basic Control<br>Function               | <ul> <li>[0] V/F</li> <li>[1] S/L Vector Control</li> <li>[2] CL Vector Control</li> <li>[3] Line Converter Control</li> <li>(AFE)</li> <li>[4] Line Active Power Filter</li> </ul> | 0~4                 | 0                          |         |
| P19.12 | PWM @Carrier<br>Frequency               | Sets the carrier frequency.                                                                                                                                                         | 1.00~10.00<br>[kHz] | 3.00<br>[kHz]              | See 8.9 |
| P19.14 | V/F Curve Pattern                       | [0]Linear Curve V/F<br>[1] Multi-point Curve V/F<br>[2] Square Curve V/F                                                                                                            | 0~3                 | 0                          | See 8.9 |
| P19.15 | Torque<br>Compensation                  | [0] Disabled<br>[1] Enabled                                                                                                                                                         | 0~1                 | 0                          | See 8.9 |
| P19.16 | Torque<br>Compensation Time             | Sets the torque compensation time                                                                                                                                                   | 2∼500<br>[ms]       | 500<br>[ms]                |         |
| P19.17 | V/F Control Mode                        | [0] V/F Frequency Control<br>[1] Slip Compensated<br>Speed Control                                                                                                                  | 0~1                 | 0                          |         |
| P19.18 | Slip Compensation<br>Time               | Sets the slip compensation time.                                                                                                                                                    | 10~1000<br>[ms]     | 200<br>[ms]                |         |
| P19.19 | Stator Resistance<br>Auto-Tuning Option | [0]Online<br>[1]Offline                                                                                                                                                             | 0~1                 | 0                          |         |



| P19.22 | Delay Time<br>@START                              | Sets the delay time at start.                                                     | 0.00~100.00<br>[s]  | 0.00<br>[s]   | See 8.9 |
|--------|---------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|---------------|---------|
| P19.23 | Min. Frequency                                    | Sets the minimum<br>frequency(valid only when<br>running in V/F control<br>mode). | 0.00~300.00<br>[Hz] | 0.00<br>[Hz]  |         |
| P19.24 | Max. Frequency                                    | Sets the maximum<br>frequency(valid only when<br>running in V/F control<br>mode). | 0.00~300.00<br>[Hz] | 50.00<br>[Hz] |         |
| P19.25 | Max. Modulation<br>Ratio                          | Sets the maximum modulation ratio.                                                | 0.0~120.0<br>[%]    | 100.0<br>[%]  |         |
| P19.26 | V/F DC offset                                     | Sets the V/F DC offset at start.                                                  | 0.00~10.00<br>[%]   | 0.75<br>[%]   | See 8.9 |
| P19.27 | Nominal Frequency<br>Voltage                      | Sets the output voltage at nominal frequency.                                     | 0.0~200.0<br>[%]    | 100.0<br>[%]  | See 8.9 |
| P19.30 | Square Curve<br>Voltage<br>Compensation<br>@START | Sets the square curve<br>voltage compensation at<br>start.                        | 0.0~100.0<br>[%]    | 0.0<br>[%]    | See 8.9 |
| P19.33 | Number of V/F points                              | Sets the number of V/F<br>points                                                  | 0~6                 | 2             | See 8.9 |
| P19.34 | V/F point @F1                                     |                                                                                   | 0.0~300.0<br>[Hz]   | 5.0<br>[Hz]   |         |
| P19.35 | V/F point @V1                                     |                                                                                   | 0.0~125.0<br>[%]    | 11.5<br>[%]   |         |
| P19.36 | V/F point @F2                                     |                                                                                   | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]  |         |
| P19.37 | V/F point @V2                                     |                                                                                   | 0.0~125.0<br>[%]    | 100.0<br>[%]  |         |
| P19.38 | V/F point @F3                                     |                                                                                   | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]  |         |
| P19.39 | V/F point @V3                                     |                                                                                   | 0.0~125.0<br>[%]    | 100.0<br>[%]  |         |
| P19.40 | V/F point @F4                                     |                                                                                   | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]  |         |
| P19.41 | V/F point @V4                                     |                                                                                   | 0.0~125.0<br>[%]    | 100.0<br>[%]  |         |
| P19.42 | V/F point @F5                                     |                                                                                   | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]  |         |
| P19.43 | V/F point @V5                                     |                                                                                   | 0.0~125.0<br>[%]    | 100.0<br>[%]  |         |
| P19.44 | V/F point @F6                                     |                                                                                   | 0.0~300.0<br>[Hz]   | 50.0<br>[Hz]  |         |

 $\label{eq:Please visit the official website for more information: www.guide-edrive.com$ 

| P19.45 | V/F point @V6                  |                                                                    | 0.0~125.0<br>[%]   | 100.0<br>[%] |         |
|--------|--------------------------------|--------------------------------------------------------------------|--------------------|--------------|---------|
|        | V/F Curve                      |                                                                    | [/•]               | [,•]         |         |
| P19.46 | @FREE_BLOCK                    |                                                                    | 0~300              | 0            |         |
| P19.47 | Voltage_ADJ<br>@FREE BLOCK     |                                                                    | 0~300              | 0            |         |
| P19.48 | Frequency_Adj_SRC              | [0]DISABLE<br>[1] PID BLOCK 1<br>[2] PID BLOCK 2<br>[3] FREE BLOCK | 0~3                | 0            |         |
| P19.49 | Frequency_ADJ<br>@FREE_BLOCK   |                                                                    | 0~300              | 0            |         |
| P19.50 | START_DC_Braking<br>@time      | Sets the time of<br>START_DC_Braking.                              | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.9 |
| P19.51 | START_DC_Braking<br>@current   | Sets the current of<br>START_DC_Braking.                           | 0.0~150.0<br>[%]   | 70.0<br>[%]  | See 8.9 |
| P19.52 | START_DC_Braking<br>@frequency | Sets the frequency of<br>START_DC_Braking.                         | 0.00~5.00<br>[Hz]  | 0.00<br>[Hz] | See 8.9 |
| P19.54 | STOP_DC_Braking<br>@time       | Sets the time of<br>STOP_DC_Braking.                               | 0.00~300.00<br>[s] | 0.00<br>[s]  | See 8.9 |
| P19.55 | STOP_DC_Braking<br>@current    | Sets the current of<br>STOP_DC_Braking.                            | 0.0~150.0<br>[%]   | 75.0<br>[%]  | See 8.9 |
| P19.56 | STOP_DC_Braking<br>@frequency  | Sets the frequency of<br>STOP_DC_Braking.                          | 0.00~5.00<br>[Hz]  | 0.00<br>[Hz] | See 8.9 |
| P19.59 | Kp_OC_Protection               | Sets OC_Protection ratio                                           | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P19.60 | Ki_OC_Protection               | Sets OC_Protection<br>integral                                     | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P19.61 | Kp_OV_Limiter                  | Sets OV_Limiter ratio                                              | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P19.62 | Ki_OV_Limiter                  | Sets OV_Limiter integral                                           | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P19.64 | V/F Stabilization<br>@Gain     | Sets the gain of V/F stabilization.                                | 0.0~1000.0<br>[%]  | 100.0<br>[%] | See 8.9 |
| P19.66 | K_CL_Ctrl                      | Sets the ratio of current<br>limit loop in V/F control<br>mode.    | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P19.67 | Start DC Brake Ratio           | Sets start DC brake Ratio                                          | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P19.68 | Start DC Brake<br>Integral     | Sets start DC brake integral                                       | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |
| P19.69 | Stop DC Brake Ratio            | Sets stop DC brake Ratio                                           | 0.0~1000.0<br>[%]  | 100.0<br>[%] |         |



| P19.70 | Stop DC Brake | Sets stop DC brake integral | 0.0~1000.0 | 100.0 |  |
|--------|---------------|-----------------------------|------------|-------|--|
|        | Integral      |                             | [%]        | [%]   |  |

#### 7.20 Motor 1 Vector Control Set P20

| Par.NO | Parameter Name                 | Description                                                                                                                                                                                                                                                    | Range                   | Default      | Ref.        |
|--------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|-------------|
| P20.0  | Dynamic Torque Control         | [0] Disabled<br>[1] Enabled                                                                                                                                                                                                                                    | 0~1                     | 0            | See<br>8.10 |
| P20.1  | Torque_Set Source              | <ul> <li>[0] Speed_Ctrl</li> <li>[1] Al 1</li> <li>[2] Al 2</li> <li>[3] Local Operator</li> <li>[4] Fixed Set:determined by<br/>the value of P20.3</li> <li>[5] Profibus DP</li> <li>[6] MODBUS</li> <li>[7] FREE BLOCK</li> </ul>                            | 0~7                     | 0            | See<br>8.10 |
| P20.2  | Torque_Set Source<br>@REV_DIR  | Same as P20.1                                                                                                                                                                                                                                                  | 0~7                     | 0            |             |
| P20.3  | Trq_Set @Fixed_Value           | Sets the fixed value of torque.                                                                                                                                                                                                                                | -300.0~<br>300.0<br>[%] | 0.0<br>[%]   | See<br>8.10 |
| P20.4  | Trq_Set @FREE_BLOCK            |                                                                                                                                                                                                                                                                | 0~300                   | 0            |             |
| P20.5  | Torque_Set Filter Time         |                                                                                                                                                                                                                                                                | 0∼1000<br>[ms]          | 0<br>[ms]    |             |
| P20.6  | Torque_Set Weight              |                                                                                                                                                                                                                                                                | 0.0~200.0<br>[%]        | 100.0<br>[%] | See<br>8.10 |
| P20.7  | Torque Limit Source            | <ul> <li>[0] Internal Limit</li> <li>[1] Fixed SET:determined</li> <li>by the value of P20.3 and</li> <li>P20.9</li> <li>[2] AI 1</li> <li>[3] AI 2</li> <li>[4] LOCAL_SET</li> <li>[5] DP Communiation</li> <li>[6] MODBUS</li> <li>[7] FREE BLOCK</li> </ul> | 0~7                     | 0            | See<br>8.10 |
| P20.8  | Torque Limit @Fwd<br>Direction | This parameter is valid<br>when P20.7 being selected<br>[1].                                                                                                                                                                                                   | 0.0~300.0<br>[%]        | 200.0<br>[%] | See<br>8.10 |



| P20.9  | Torque Limit @Rev<br>Direction     | This parameter is valid<br>when P20.7 being selected<br>[1].                                      | 0.0~300.0<br>[%] | 200.0<br>[%] | See<br>8.10 |
|--------|------------------------------------|---------------------------------------------------------------------------------------------------|------------------|--------------|-------------|
| P20.10 | Torque Limit<br>@FREE_BLOCK        |                                                                                                   | 0~300            | 0            |             |
| P20.11 | Torque_Limit Filter Time           |                                                                                                   | 0∼1000<br>[ms]   | 0<br>[ms]    |             |
| P20.12 | Kp_2x @Spd_Ctrl                    | Sets the proportional gain for high speed control.                                                | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P20.14 | Encoder Pulses numbers             | Sets the pulses number of motor per Rev                                                           | 0~60000          | 1024         |             |
| P20.15 | Encoder Phase Sequenc<br>e Reverse | 0]Disabled<br>[1]Enabled                                                                          | 0~1              | 0            | See<br>8.10 |
| P20.16 | Max. Speed                         | Sets the maximum speed<br>when in forward (valid only<br>when running in Vector<br>control mode). | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P20.17 | Max. Reverse Speed                 | Sets the maximum speed<br>when in reverse (valid only<br>when running in Vector<br>control mode). | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P20.18 | Min. Speed                         | Sets the minimum speed<br>when in forward (valid only<br>when running in Vector<br>control mode). | 0.0~300.0<br>[%] | 0.0<br>[%]   |             |
| P20.19 | Min. Reverse Speed                 | Sets the minimum speed<br>when in reverse (valid only<br>when running in Vector<br>control mode). | 0.0~300.0<br>[%] | 0.0<br>[%]   |             |
| P20.20 | Adjustable Speed Limit<br>Function | [0]Disabled<br>[1]Enabled                                                                         | 0~1              | 0            |             |
| P20.21 | Adjustable Speed Limit<br>Curve    | [0]PARABOLIC<br>[1]LINEAR                                                                         | 0~1              | 0            |             |
| P20.22 | Speed Limit I @Min_Load            | Valid only when running in constant power control mode.                                           | 0.0~300.0<br>[%] | 160.0<br>[%] |             |
| P20.23 | Min_Load @Spd_Lmt_I                | Valid only when running in<br>constant power control<br>mode.                                     | 0.0~200.0<br>[%] | 20.0<br>[%]  |             |
| P20.24 | Speed Limit II<br>@Max_Load        | Valid only when running in<br>constant power control<br>mode.                                     | 0.0~300.0<br>[%] | 100.0<br>[%] |             |

Please visit the official website for more information: www.guide-edrive.com

| P20.25 | Max_Load @Spd_Lmt_II                            | Valid only when running in<br>constant power control<br>mode.                                                                                                 | 0.0~200.0<br>[%]  | 100.0<br>[%] |             |
|--------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------------|
| P20.26 | Position Loop Gain                              | Position Loop Gain                                                                                                                                            | 0.0~1000.0<br>[%] | 0.0<br>[%]   | See<br>8.10 |
| P20.27 | Position Loop Speed Co<br>mpensation            | Position loop output limit<br>value, corresponding Max.<br>speed regulating variable                                                                          | 0.00~15.00<br>[%] | 2.00<br>[%]  | See<br>8.10 |
| P20.28 | Speed Limit<br>@Torque_Control                  | [0]Max. Speed Set:limited<br>by the value of P20.16 and<br>P20.17<br>[1]Ramp Function Input<br>[2]Ramp Function Output<br>[3]PROFIBUS                         | 0~3               | 0            |             |
| P20.30 | Speed Offset Source<br>(For toque control mode) | <ul><li>[0]Fixed Offset: the speed<br/>offset determined by the<br/>value of P20.31 and P20.32</li><li>[1]AI 1</li><li>[2]AI 2</li><li>[3]Local SET</li></ul> | 0~3               | 0            |             |
| P20.31 | FWD Speed_Offset                                | Sets FWD speed offset<br>value                                                                                                                                | 0.0~100.0<br>[%]  | 5.0<br>[%]   |             |
| P20.32 | REV Speed_Offset                                | Sets REV speed offset<br>value                                                                                                                                | 0.0~100.0<br>[%]  | 5.0<br>[%]   |             |
| P20.34 | Synchronal Compensatio<br>n Enabled             | [0]Disabled<br>[1]Enabled                                                                                                                                     | 0~1               | 0            | See<br>8.10 |
| P20.35 | Field Hold Time                                 | Field hold time after stop                                                                                                                                    | 0.0~100.0<br>[s]  | 0.0<br>[s]   |             |
| P20.36 | Start Field Current                             | Sets start field current value                                                                                                                                | 50.0~150.0<br>[%] | 110.0<br>[%] |             |
| P20.37 | Start Base Field                                | Sets the start base field                                                                                                                                     | 0.0~150.0<br>[%]  | 100.0<br>[%] | See<br>8.10 |
| P20.38 | Base Field END_Speed                            | Sets the end speed for base field.                                                                                                                            | 0.0~100.0<br>[%]  | 25.0<br>[%]  | See<br>8.10 |
| P20.39 | Base Field                                      | Sets the base field.                                                                                                                                          | 0.0~120.0<br>[%]  | 100.0<br>[%] | See<br>8.10 |
| P20.40 | Base Field Start Speed                          | Sets the start speed for base field                                                                                                                           | 0.0~150.0<br>[%]  | 100.0<br>[%] | See<br>8.10 |
| P20.41 | Max. Field                                      | Sets the maximum field.                                                                                                                                       | 0.0~150.0<br>[%]  | 135.0<br>[%] |             |
| P20.42 | LOAD DETECTION                                  | [0]Disabled<br>[1]Enabled                                                                                                                                     | 0~1               | 1            |             |

7

| D00 40        | Load Datastian Time        | Sets the time for load      | 25~1000                         | 75           |      |
|---------------|----------------------------|-----------------------------|---------------------------------|--------------|------|
| P20.43        |                            | detection.                  | [ms]                            | [ms]         |      |
| <b>DOO</b> 44 | Mainht Data ation Time     | Sets the time for weight    | 25~1000                         | 250          |      |
| P20.44        | weight Detection Time      | detection.                  | [ms]                            | [ms]         |      |
|               |                            | Valid only when running in  | 0.0 100.0                       | 00.0         |      |
| P20.45        | FVVD_lorque @Zero          | constant power control      | 0.0~100.0                       | ZZ.U         |      |
|               | vveignt                    | mode.                       | [70]                            | [70]         |      |
|               |                            | Valid only when running in  | 0.0 100.0                       | 10.0         |      |
| P20.46        | REV_loique @Zero           | constant power control      | 0.0~100.0<br>r%1                | 18.U<br>19/1 |      |
|               | vveignt                    | mode.                       | [70]                            | [70]         |      |
|               | EWD Torgue @Weight         | Valid only when running in  | 0.0~.200.0                      | 02.0         |      |
| P20.47        | under Test                 | constant power control      | 0.0 <sup>, °</sup> 200.0<br>[%] | 92.0<br>[%]  |      |
|               |                            | mode.                       | [/0]                            | [70]         |      |
|               | PEV Torque @Weight         | Valid only when running in  | 0.0~200.0                       | 87.0         |      |
| P20.48        | under Test                 | constant power control      | 0.0° 200.0<br>[%]               | 07.0<br>[%]  |      |
|               |                            | mode.                       | [70]                            | [70]         |      |
|               |                            | Valid only when running in  | 0.0~150.0                       | 100.0        |      |
| P20.49        | Weight under Test          | constant power control      | 0.0 130.0<br>[%]                | 100.0<br>[%] |      |
|               |                            | mode.                       | [,0]                            | [,0]         |      |
|               | Kp<br>@OV_SUPRESSION_Ctrl  | Sets the proportional gain  | 0.0~1000.0                      | 100.0        |      |
| P20.51        |                            | for overvoltage             | [%]                             | 100.0<br>[%] |      |
|               |                            | suppression.                | [,0]                            | [,0]         |      |
| D20 52        | Ki                         | Sets the integral gain for  | 0.0~1000.0                      | 100.0        |      |
| F20.52        | @OV_SUPRESSION_Ctrl        | overvoltage suppression.    | [%]                             | [%]          |      |
| D20 52        | Kn @field_ctrl             | Sets the proportional gain  | 0.0~1000.0                      | 100.0        |      |
| F20.55        |                            | for field control.          | [%]                             | [%]          |      |
| D20 54        | Ki@field_ctrl              | Sets the integral gain for  | 0.0~1000.0                      | 100.0        |      |
| F20.54        |                            | field control.              | [%]                             | [%]          |      |
| D20 55        | K@Snd_Ctrl                 | Sets the proportional gain  | 0.0~1000.0                      | 100.0        | See  |
| F 20.33       |                            | for speed control.          | [%]                             | [%]          | 8.10 |
| D20 56        | Ki@field.ctrl              | Sets the integral gain for  | 0.0~1000.0                      | 100.0        | See  |
| F20.50        |                            | field control.              | [%]                             | [%]          | 8.10 |
| D00           |                            | [0]Disabled                 | 0 - 1                           | 0            | See  |
| P20.57        | Field Discharge Enabled    | [1]Enabled                  | 0~1                             | 0            | 8.10 |
|               | Field Discharge Max Cu     | Sets the Max current value  | 0.0~125.0                       | 100.0        | See  |
| P20.58        |                            | for field discharge         | 0.0 - 120.0<br>[%]              | [%]          | 8 10 |
|               | rrent                      | ior neiu discharge          | [,0]                            | [,,]         | 0.10 |
| D20 50        | Excitation after Field Dis | Sets excitation value after | 1.0~25.0                        | 2.5          | See  |
| F 20.09       | charge                     | field discharge stop        | [%]                             | [%]          | 8.10 |
|               |                            | DROOP is invalid when 0 is  | 0.0~100.0                       | 0.0          | See  |
| P20.60        | DROOP Control Gain         | set                         | [%]                             | [%]          | 8.10 |

|                |                          | Adjiust ROOP control          |                           |       |      |
|----------------|--------------------------|-------------------------------|---------------------------|-------|------|
|                | DROOP Control Filter Ti  | response. Increase the        | 30~2000                   | 50    | See  |
| P20.61         | me                       | value when vibrating and      | [ms]                      | [ms]  | 8.10 |
|                |                          | surging.                      |                           |       |      |
|                | Kn Qourront otri         | Sets the proportional gain    | 0.0~1000.0                | 100.0 | See  |
| P20.62         | Kp @current_ctn          | for current control.          | [%]                       | [%]   | 8.10 |
|                |                          | Sets the integral gain for    | 0.0~1000.0                | 100.0 | See  |
| P20.63         | Ki @curreni_ctii         | current control.              | [%]                       | [%]   | 8.10 |
| D00.04         | Master alous usin        | Synchronization control       | 0.0~100.0                 | 0     | See  |
| P20.64         | Master_slave gain        | gain                          | [%]                       | 0     | 8.10 |
|                | MS Filter Time           | Synchronization control       | 30~2000ms                 | 50    |      |
| P20.65         |                          | filter time                   | 30 <sup>,2</sup> 20001115 | 50    |      |
| D00.00         | Im @Acc. time            | Sets the load inertia.(in     | 0.01~300.00               | 0.75  |      |
| P20.98         |                          | units of time)                | [s]                       | [s]   |      |
| <b>D</b> 20.00 | Pm @Eriction Loss Easter | Sate the friction lose factor | 0.00~10.00                | 0.00  |      |
| P20.99         |                          |                               | [%]                       | [%]   |      |

## 7.21 Motor 2 Vector Control Set P21

| Par.NO | Parameter Name                | Description                 | Range         | Default    | Ref. |
|--------|-------------------------------|-----------------------------|---------------|------------|------|
| P21.0  | Dynamic Torque Control        | [0] Disabled                | 0~1           | 0          | See  |
| 121.0  |                               | [1] Enabled                 | <u> </u>      | Ŭ          | 8.10 |
|        |                               | [0] Speed_Ctrl              |               |            |      |
|        |                               | [1] AI 1                    |               |            |      |
|        |                               | [2] AI 2                    |               |            |      |
|        |                               | [3] Local Operator          |               |            | See  |
| P21.1  | Torque_Set Source             | [4] Fixed Set:determined by | 0~7           | 0          | 0 10 |
|        |                               | the value of P21.3          |               |            | 0.10 |
|        |                               | [5] Profibus DP             |               |            |      |
|        |                               | [6] MODBUS                  |               |            |      |
|        |                               | [7] FREE BLOCK              |               |            |      |
| P21.2  | Torque_Set Source<br>@REV_DIR | Same as P21.1               | 0~7           | 0          |      |
|        |                               | Sate the fixed value of     | -300.0 $\sim$ | 0.0        | 800  |
| P21.3  | Trq_Set @Fixed_Value          |                             | 300.0         | 0.0<br>[%] | 9 10 |
|        |                               | lorque.                     | [%]           | [ /0]      | 0.10 |
| P21.4  | Trq_Set @FREE_BLOCK           |                             | 0~300         | 0          |      |
|        | Torque Cat Filter Time        |                             | 0~1000        | 0          |      |
| P21.5  |                               |                             | [ms]          | [ms]       |      |
| D01.0  | Torque, Set Weight            |                             | 0.0~200.0     | 100.0      | See  |
| P21.6  |                               |                             | [%]           | [%]        | 8.10 |

Please visit the official website for more information: www.guide-edrive.com

7

| P21.7  | Torque Limit Source                | <ul> <li>[0] Internal Limit</li> <li>[1] Fixed SET: determined</li> <li>by the value of P21.3 and</li> <li>P21.9</li> <li>[2] AI 1</li> <li>[3] AI 2</li> <li>[4] LOCAL_SET</li> <li>[5]Profibus DP</li> <li>[6] MODBUS</li> <li>[7] FREE BLOCK</li> </ul> | 0~7              | 0            | See<br>8.10 |
|--------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------|
| P21.8  | Torque Limit @Fwd<br>Direction     | This parameter is valid<br>when P21.7 being selected<br>[1].                                                                                                                                                                                               | 0.0~300.0<br>[%] | 200.0<br>[%] | See<br>8.10 |
| P21.9  | Torque Limit @Rev<br>Direction     | This parameter is valid<br>when P21.7 being selected<br>[1].                                                                                                                                                                                               | 0.0~300.0<br>[%] | 200.0<br>[%] | See<br>8.10 |
| P21.10 | Torque Limit<br>@FREE_BLOCK        |                                                                                                                                                                                                                                                            | 0~300            | 0            |             |
| P21.11 | Torque_Limit Filter Time           |                                                                                                                                                                                                                                                            | 0∼1000<br>[ms]   | 0<br>[ms]    |             |
| P21.12 | Kp_2x @Spd_Ctrl                    | Sets the proportional gain for high speed control.                                                                                                                                                                                                         | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P21.14 | Encoder Pulses numbers             | Sets the pulses number of motor per Rev                                                                                                                                                                                                                    | 0~60000          | 1024         |             |
| P21.15 | Encoder Phase Sequenc<br>e Reverse | [0]Disabled<br>[1]Enabled                                                                                                                                                                                                                                  | 0~1              | 0            | See<br>8.10 |
| P21.16 | Max. Speed                         | Sets the maximum speed<br>when in forward (valid only<br>when running in Vector<br>control mode).                                                                                                                                                          | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P21.17 | Max. Reverse Speed                 | Sets the maximum speed<br>when in reverse (valid only<br>when running in Vector<br>control mode).                                                                                                                                                          | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P21.18 | Min. Speed                         | Sets the minimum speed<br>when in forward (valid only<br>when running in Vector<br>control mode).                                                                                                                                                          | 0.0~300.0<br>[%] | 0.0<br>[%]   |             |
| P21.19 | Min. Reverse Speed                 | Sets the minimum speed<br>when in reverse (valid only<br>when running in Vector<br>control mode).                                                                                                                                                          | 0.0~300.0<br>[%] | 0.0<br>[%]   |             |

Please visit the official website for more information: www.guide-edrive.com

| P21.20 | Constant Power Speed<br>Limit Enabled           | [0]Disabled<br>[1]Enabled                                                                                                                                                         | 0~1               | 0            |             |
|--------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------------|
| P21.21 | Constant Power Speed<br>Limit Curve             | [0]PARABOLIC<br>[1]LINEAR                                                                                                                                                         | 0~1               | 0            |             |
| P21.22 | Speed Limit I @Min_Load                         | Valid only when running in<br>constant power control<br>mode.                                                                                                                     | 0.0~300.0<br>[%]  | 160.0<br>[%] |             |
| P21.23 | Min_Load @Spd_Lmt_I                             | Valid only when running in<br>constant power control<br>mode.                                                                                                                     | 0.0~200.0<br>[%]  | 20.0<br>[%]  |             |
| P21.24 | Speed Limit II<br>@Max_Load                     | Valid only when running in<br>constant power control<br>mode.                                                                                                                     | 0.0~300.0<br>[%]  | 100.0<br>[%] |             |
| P21.25 | Max_Load @Spd_Lmt_II                            | Valid only when running in<br>constant power control<br>mode.                                                                                                                     | 0.0~200.0<br>[%]  | 100.0<br>[%] |             |
| P21.26 | Position Loop Gain                              | Sets position loop gain.                                                                                                                                                          | 0.0~1000.0<br>[%] | 0.0<br>[%]   | See<br>8.10 |
| P21.27 | Position Loop SpeedCo<br>mpensation             | Position loop output limit<br>value, corresponding Max.<br>Speed regulating variable.                                                                                             | 0.00~15.00<br>[%] | 2.00<br>[%]  | See<br>8.10 |
| P21.28 | Speed Limit<br>@Torque_Control                  | <ul> <li>[0]Max. Speed Set: limited<br/>by the value of P21.16<br/>and P21.17</li> <li>[1]Ramp Function Input</li> <li>[2]Ramp Function Output</li> <li>[3]Profibus DP</li> </ul> | 0~3               | 0            |             |
| P21.30 | Speed Offset Source<br>(For toque control mode) | <ul> <li>[0]Fixed Offset: the speed<br/>offset determined by the<br/>value of P21.31 and<br/>P21.32</li> <li>[1]Al 1</li> <li>[2]Al 2</li> <li>[3]Local SET</li> </ul>            | 0~3               | 0            |             |
| P21.31 | FWD Speed_Offset                                | Sets foreward speed offset.                                                                                                                                                       | 0.0~100.0<br>[%]  | 5.0<br>[%]   |             |
| P21.32 | REV Speed_Offset                                | Sets reverse speed offset.                                                                                                                                                        | 0.0~100.0<br>[%]  | 5.0<br>[%]   |             |
| P21.34 | Synchronal Compensatio<br>n Enabled             | [0]Disabled<br>[1]Enabled                                                                                                                                                         | 0~1               | 0            | See<br>8.10 |

| P21.35 | Field Hold Time       | Sets field hold time after   | 0.0∼100.0<br>[s] | 0.0<br>[s]  |             |
|--------|-----------------------|------------------------------|------------------|-------------|-------------|
| P21.36 | Start Field Current   | Sets start field current     | 50.0~150.0       | 110.0       |             |
|        |                       | value.                       | [%]              | [%]         |             |
| P21.37 | Base Field            | Sets the base field.         | 0.0~150.0        | 100.0       | See         |
|        |                       |                              |                  | [%]         | 8.10        |
| P21.38 | Base Field END_Speed  | Sets the end speed for       | 0.0~100.0        | 25.0<br>[%] | See<br>9 10 |
|        |                       |                              | [/0]             | 100.0       | 0.10<br>See |
| P21.39 | Top Field             | Sets the top field.          | [%]              | [%]         | 8.10        |
|        |                       | Sets the start speed for top | 0.0~150.0        | 100.0       | See         |
| P21.40 | Top Field START_Speed | field.                       | [%]              | [%]         | 8.10        |
| D01 41 | Max Field             | Sots the maximum field       | 0.0~150.0        | 135.0       |             |
| P21.41 |                       |                              | [%]              | [%]         |             |
| P21.42 | Torque Detection      | [0]Disabled<br>[1]Enabled    | 0~1              | 1           |             |
|        |                       | Sets torque detection tim    | 25~1000          | 75          |             |
| P21.43 | Torque Detection Time | e.                           | [ms]             | [ms]        |             |
|        |                       | Sets the time for weight     |                  |             |             |
|        |                       | detection.( Valid only when  | 25~1000          | 250         |             |
| P21.44 | Load Detection Time   | running in constant power    | [ms]             | [ms]        |             |
|        |                       | control mode )               |                  |             |             |
|        |                       | Valid only when running in   |                  |             |             |
| P21.45 | FWD_Torque @Zero      | constant power control       | 0.0~100.0        | 22.0        |             |
|        | Weight                | mode.(Weight)                | [%]              | [%]         |             |
|        |                       | Valid only when running in   | 0.0~100.0        | 18.0        |             |
| P21.46 | Weight                | constant power control       | [%]              | 18.0<br>[%] |             |
|        | voight                | mode.                        | [,.]             | [,0]        |             |
|        | FWD Torque @Weight    | Valid only when running in   | 0.0~200.0        | 92.0        |             |
| P21.47 | under Test            | constant power control       | [%]              | [%]         |             |
|        |                       | mode.                        |                  |             |             |
| D21 40 | REV_Torque @Weight    | constant power control       | 0.0~200.0        | 87.0        |             |
| P21.40 | under Test            |                              | [%]              | [%]         |             |
|        |                       | Valid only when running in   |                  |             |             |
| P21.49 | Weight under Test     | constant power control       | 0.0~150.0        | 100.0       |             |
|        |                       | mode.                        | [%]              | [%]         |             |
|        | Kn                    | Sets the proportional gain   | 0.0~1000.0       | 100.0       |             |
| P21.51 | MOV SUPRESSION Ctrl   | for overvoltage              | [%]              | [%]         |             |
|        |                       | suppression.                 | [,,]             | [,.]        |             |

| P21 52  | Ki                         | Sets the integral gain for    | 0.0~1000.0       | 100.0      |      |
|---------|----------------------------|-------------------------------|------------------|------------|------|
| 1 21.02 | @OV_SUPRESSION_Ctrl        | overvoltage suppression.      | [%]              | [%]        |      |
| D21 53  | Kn @field_ctrl             | Sets the proportional gain    | 0.0~1000.0       | 100.0      |      |
| F21.55  |                            | for field control.            | [%]              | [%]        |      |
|         | Ki@field_ctrl              | Sets the integral gain for    | 0.0~1000.0       | 100.0      |      |
| P21.34  |                            | field control.                | [%]              | [%]        |      |
|         | K @Sad Ctrl                | Sets the proportional gain    | 0.0~1000.0       | 100.0      | See  |
| P21.55  | K @Spu_Ctil                | for speed control.            | [%]              | [%]        | 8.10 |
| D04 50  | K Mainht @Duaka Ctu        | Sets the gain for brake       | 0.0~1000.0       | 100.0      | See  |
| P21.56  | K_vveight @Brake_Ctri      | control when in forward.      | [%]              | [%]        | 8.10 |
|         |                            | [0]Disabled                   |                  |            | See  |
| P21.57  | Field Discharge Enabled    | [1]Enabled                    | 0∼1              | 0          | 8.10 |
|         | Field Discharge May Ou     |                               | 0.0 105.0        | 400.0      | 0    |
| P21.58  | Field Discharge Max. Cu    | Sets the Max. current value   | $0.0 \sim 125.0$ | 100.0      | See  |
|         | rrent                      | for field discharge           | [%]              | [%]        | 8.10 |
|         | Excitation after Field Dis | Sets excitation value after   | 1.0~25.0         | 2.5        | See  |
| P21.59  | charge                     | field discharge stop          | [%]              | [%]        | 8.10 |
|         |                            | DROOP is invalid when 0 is    | 0.0~100.0        | 0.0        | See  |
| P21.60  | DROOP Control Gain         | set                           | [%]              | [%]        | 8.10 |
|         |                            | Adiiust ROOP control          |                  |            |      |
|         | DROOP Control Filter Ti    | response Increase the         | 30~2000          | 50         | See  |
| P21.61  |                            |                               | 50° 2000<br>[ms] | JU<br>[ms] | 8 10 |
|         | me                         | value when vibrating and      | ling             | ling       | 0.10 |
|         |                            | surging.                      |                  |            |      |
| P21 62  | Kp@current_ctrl            | Sets the proportional gain    | 0.0~1000.0       | 100.0      | See  |
| 1 21.02 |                            | for current control.          | [%]              | [%]        | 8.10 |
| P21 63  | Ki@current_ctrl            | Sets the integral gain for    | 0.0~1000.0       | 100.0      | See  |
| 1 21.00 |                            | current control.              | [%]              | [%]        | 8.10 |
| D21 64  | Master, slave gain         | Synchronization control       | 0.0~100.0        | 0          | See  |
| FZ1.04  |                            | gain                          | [%]              | 0          | 8.10 |
| D21 65  | MS Filter Time             | Synchronization control       | 30~2000ms        | 50         |      |
| F21.03  |                            | filter time                   | 2000113          | 00         |      |
| D21 09  | .Im@Acc.time               | Sets the load inertia.(in     | 0.01~300.00      | 0.75       |      |
| FZ1.90  |                            | units of time)                | [s]              | [s]        |      |
| D21 00  | Bm @Friction Loss Factor   | Sets the friction loss factor | 0.00~10.00       | 0.00       |      |
| FZ1.99  |                            |                               | [%]              | [%]        |      |

# 7.22 Motor 3 Vector Control Set P22

| Par.NO Pa | arameter Name | Description | Range | Default | Ref. |
|-----------|---------------|-------------|-------|---------|------|
|-----------|---------------|-------------|-------|---------|------|

Please visit the official website for more information: www.guide-edrive.com

125

**GUIDE** 

7

| P22.0  | Dynamic Torque Control         | [0] Disabled<br>[1] Enabled                                                                                                                                                                                                                                | 0~1                     | 0            | See<br>8.10 |
|--------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|-------------|
| P22.1  | Torque_Set Source              | <ul> <li>[0] Speed_Ctrl</li> <li>[1] Al 1</li> <li>[2] Al 2</li> <li>[3] Local Operator</li> <li>[4] Fixed Set:determined by<br/>the value of P22.3</li> <li>[5] Profibus DP</li> <li>[6] MODBUS</li> <li>[7] FREE BLOCK</li> </ul>                        | 0~7                     | 0            | See<br>8.10 |
| P22.2  | Torque_Set Source<br>@REV_DIR  | Same as P22.1                                                                                                                                                                                                                                              | 0~7                     | 0            |             |
| P22.3  | Trq_Set @Fixed_Value           | Sets the fixed value of torque.                                                                                                                                                                                                                            | -300.0~<br>300.0<br>[%] | 0.0<br>[%]   | See<br>8.10 |
| P22.4  | Trq_Set @FREE_BLOCK            |                                                                                                                                                                                                                                                            | 0~300                   | 0            |             |
| P22.5  | Torque_Set Filter Time         |                                                                                                                                                                                                                                                            | 0∼1000<br>[ms]          | 0<br>[ms]    |             |
| P22.6  | Torque_Set Weight              |                                                                                                                                                                                                                                                            | 0.0~200.0<br>[%]        | 100.0<br>[%] | See<br>8.10 |
| P22.7  | Torque Limit Source            | <ul> <li>[0] Internal Limit</li> <li>[1] Fixed SET: determined</li> <li>by the value of P21.3 and</li> <li>P21.9</li> <li>[2] AI 1</li> <li>[3] AI 2</li> <li>[4] LOCAL_SET</li> <li>[5]Profibus DP</li> <li>[6] MODBUS</li> <li>[7] FREE BLOCK</li> </ul> | 0~7                     | 0            | See<br>8.10 |
| P22.8  | Torque Limit @Fwd<br>Direction | This parameter is valid<br>when P22.7 being selected<br>[1].                                                                                                                                                                                               | 0.0~300.0<br>[%]        | 200.0<br>[%] | See<br>8.10 |
| P22.9  | Torque Limit @Rev<br>Direction | This parameter is valid<br>when P22.7 being selected<br>[1].                                                                                                                                                                                               | 0.0~300.0<br>[%]        | 200.0<br>[%] | See<br>8.10 |
| P22.10 | Torque Limit<br>@FREE_BLOCK    |                                                                                                                                                                                                                                                            | 0~300                   | 0            |             |
| P22.11 | Torque_Limit Filter Time       |                                                                                                                                                                                                                                                            | 0∼1000<br>[ms]          | 0<br>[ms]    |             |
| P22.12 | Kp_2x @Spd_Ctrl                | Sets the proportional gain for high speed control.                                                                                                                                                                                                         | 0.0~300.0<br>[%]        | 100.0<br>[%] |             |

Please visit the official website for more information: www.guide-edrive.com

| P22.14 | Encoder Pulses numbers                | Sets the pulses number of motor per Rev                                                           | 0~60000           | 1024         |             |
|--------|---------------------------------------|---------------------------------------------------------------------------------------------------|-------------------|--------------|-------------|
| P22.15 | Encoder Phase Sequenc<br>e Reverse    | [0]Disabled<br>[1]Enabled                                                                         | 0~1               | 0            | See<br>8.10 |
| P22.16 | Max. Speed                            | Sets the maximum speed<br>when in forward (valid only<br>when running in Vector<br>control mode). | 0.0~300.0<br>[%]  | 100.0<br>[%] |             |
| P22.17 | Max. Reverse Speed                    | Sets the maximum speed<br>when in reverse (valid only<br>when running in Vector<br>control mode). | 0.0~300.0<br>[%]  | 100.0<br>[%] |             |
| P22.18 | Min. Speed                            | Sets the minimum speed<br>when in forward (valid only<br>when running in Vector<br>control mode). | 0.0~300.0<br>[%]  | 0.0<br>[%]   |             |
| P22.19 | Min. Reverse Speed                    | Sets the minimum speed<br>when in reverse (valid only<br>when running in Vector<br>control mode). | 0.0~300.0<br>[%]  | 0.0<br>[%]   |             |
| P22.20 | Constant Power Speed<br>Limit Enabled | [0]Disabled<br>[1]Enabled                                                                         | 0~1               | 0            |             |
| P22.21 | Constant Power Speed<br>Limit Curve   | [0]PARABOLIC<br>[1]LINEAR                                                                         | 0~1               | 0            |             |
| P22.22 | Speed Limit I @Min_Load               | Valid only when running in<br>constant power control<br>mode.                                     | 0.0~300.0<br>[%]  | 160.0<br>[%] |             |
| P22.23 | Min_Load @Spd_Lmt_I                   | Valid only when running in<br>constant power control<br>mode.                                     | 0.0~200.0<br>[%]  | 20.0<br>[%]  |             |
| P22.24 | Speed Limit II<br>@Max_Load           | Valid only when running in<br>constant power control<br>mode.                                     | 0.0~300.0<br>[%]  | 100.0<br>[%] |             |
| P22.25 | Max_Load @Spd_Lmt_II                  | Valid only when running in constant power control mode.                                           | 0.0~200.0<br>[%]  | 100.0<br>[%] |             |
| P22.26 | Position Loop Gain                    | Sets position loop gain.                                                                          | 0.0~1000.0<br>[%] | 0.0<br>[%]   | See<br>8.10 |

| P22.27 | Position Loop SpeedCo<br>mpensation             | Position loop output limit<br>value, corresponding<br>Max. Speed regulating<br>variable.                                                                                          | 0.00~15.00<br>[%] | 2.00<br>[%]  | See<br>8.10 |
|--------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------------|
| P22.28 | Speed Limit<br>@Torque_Control                  | <ul> <li>[0]Max. Speed Set: limited<br/>by the value of P22.16<br/>and P22.17</li> <li>[1]Ramp Function Input</li> <li>[2]Ramp Function Output</li> <li>[3]Profibus DP</li> </ul> | 0~3               | 0            |             |
| P22.30 | Speed Offset Source<br>(For toque control mode) | <ul> <li>[0]Fixed Offset: the speed<br/>offset determined by<br/>the value of P22.31 and<br/>P22.32</li> <li>[1]Al 1</li> <li>[2]Al 2</li> <li>[3]Local SET</li> </ul>            | 0~3               | 0            |             |
| P22.31 | FWD Speed_Offset                                | Sets foreward speed offset.                                                                                                                                                       | 0.0~100.0<br>[%]  | 5.0<br>[%]   |             |
| P22.32 | REV Speed_Offset                                | Sets reverse speed offset.                                                                                                                                                        | 0.0~100.0<br>[%]  | 5.0<br>[%]   |             |
| P22.34 | Synchronal Compensatio<br>n Enabled             | [0]Disabled<br>[1]Enabled                                                                                                                                                         | 0~1               | 0            | See<br>8.10 |
| P22.35 | Field Hold Time                                 | Sets field hold time after stop.                                                                                                                                                  | 0.0~100.0<br>[s]  | 0.0<br>[s]   |             |
| P22.36 | Start Field Current                             | Sets start field current value.                                                                                                                                                   | 50.0~150.0<br>[%] | 110.0<br>[%] |             |
| P22.37 | Base Field                                      | Sets the base field.                                                                                                                                                              | 0.0~150.0<br>[%]  | 100.0<br>[%] | See<br>8.10 |
| P22.38 | Base Field END_Speed                            | Sets the end speed for base field.                                                                                                                                                | 0.0~100.0<br>[%]  | 25.0<br>[%]  | See<br>8.10 |
| P22.39 | Top Field                                       | Sets the top field.                                                                                                                                                               | 0.0~120.0<br>[%]  | 100.0<br>[%] | See<br>8.10 |
| P22.40 | Top Field START_Speed                           | Sets the start speed for top field.                                                                                                                                               | 0.0~150.0<br>[%]  | 100.0<br>[%] | See<br>8.10 |
| P22.41 | Max. Field                                      | Sets the maximum field.                                                                                                                                                           | 0.0~150.0<br>[%]  | 135.0<br>[%] |             |
| P22.42 | Torque Detection                                | [0]Disabled<br>[1]Enabled                                                                                                                                                         | 0~1               | 1            |             |
| P22.43 | Torque Detection Time                           | Sets torque detection tim                                                                                                                                                         | 25~1000<br>[ms]   | 75<br>[ms]   |             |



| r       |                           |                             |                               |              |      |
|---------|---------------------------|-----------------------------|-------------------------------|--------------|------|
|         |                           | Sets the time for weight    |                               |              |      |
| 022.44  | Laad Datastian Time       | detection.( Valid only when | 25~1000                       | 250          |      |
| PZZ.44  | Load Delection Time       | running in constant power   | [ms]                          | [ms]         |      |
|         |                           | control mode.)              |                               |              |      |
|         |                           | Valid only when running in  | 0.0~100.0                     | 22.0         |      |
| P22.45  | Weight                    | constant power control      | 0.0 <sup>1</sup> 100.0<br>[%] | 22.0<br>[%]  |      |
|         | Weight                    | mode.(Weight)               | [,0]                          | [,0]         |      |
|         | REV Torque @Zero          | Valid only when running in  | 0.0~100.0                     | 18.0         |      |
| P22.46  | Weight                    | constant power control      | [%]                           | [%]          |      |
|         |                           |                             |                               |              |      |
| D00 47  | FWD_Torque @Weight        | valid only when running in  | 0.0~200.0                     | 92.0         |      |
| P22.47  | under Test                | mode                        | [%]                           | [%]          |      |
|         |                           | Valid only when running in  |                               |              |      |
| P22 48  | REV_Torque @Weight        | constant power control      | 0.0~200.0                     | 87.0         |      |
| 1 22.10 | under Test                | mode.                       | [%]                           | [%]          |      |
|         |                           | Valid only when running in  | 0.0 (50.0                     | 100.0        |      |
| P22.49  | Weight under Test         | constant power control      | 0.0~150.0                     | 100.0        |      |
|         |                           | mode.                       | [70]                          | [70]         |      |
|         | Kp<br>@OV_SUPRESSION_Ctrl | Sets the proportional gain  | 0.0~1000.0                    | 100.0        |      |
| P22.51  |                           | for overvoltage             | [%]                           | [%]          |      |
|         |                           | suppression.                |                               |              |      |
| P22.52  | Ki                        | Sets the integral gain for  | 0.0~1000.0                    | 100.0        |      |
|         | @OV_SUPRESSION_Ctrl       | overvoltage suppression.    | [%]                           | [%]          |      |
| P22.53  | Kp @field_ctrl            | Sets the proportional gain  | 0.0~1000.0<br>r%1             | 100.0<br>r%1 |      |
|         |                           | Sets the integral gain for  | [ <sup>70</sup> ]             | 100.0        |      |
| P22.54  | Ki @field_ctrl            | field control               | [%]                           | 100.0<br>[%] |      |
|         |                           | Sets the proportional gain  | 0.0~1000.0                    | 100.0        | See  |
| P22.55  | K @Spd_Ctrl               | for speed control.          | [%]                           | [%]          | 8.10 |
|         |                           | Sets the gain for brake     | 0.0~1000.0                    | 100.0        | See  |
| P22.56  | K_weight @Brake_Ctri      | control when in forward.    | [%]                           | [%]          | 8.10 |
|         |                           | [0]Disabled                 | 0 1                           | 0            | See  |
| P22.57  | Field Discharge Enabled   | [1]Enabled                  | 0~1                           | 0            | 8.10 |
|         | Field Discharge Max. Cu   | Sets the Max. current value | 0.0~125.0                     | 100.0        | See  |
| P22.58  | rrent                     | for field discharge         | [%]                           | [%]          | 8.10 |
|         | Evolution offer Field Di- |                             | 4.0.05.0                      | 0.5          | 0    |
| P22.59  |                           | Sets excitation value after | 1.0∼25.0<br>լ%ı               | 2.5<br>[%]   | See  |
|         | charge                    | field discharge stop        | [70]                          | [70]         | δ.10 |
| P22 60  | DROOP Control Gain        | DROOP is invalid when 0 is  | 0.0~100.0                     | 0.0          | See  |
| 1 22.00 |                           | set                         | [%]                           | [%]          | 8.10 |

7



|                |                          | Adjiust ROOP control          |             |       |      |
|----------------|--------------------------|-------------------------------|-------------|-------|------|
| <b>DOD 04</b>  | DROOP Control Filter Ti  | response. Increase the        | 30~2000     | 50    | See  |
| P22.61         | me                       | value when vibrating and      | [ms]        | [ms]  | 8.10 |
|                |                          | surging.                      |             |       |      |
| <b>DOO 00</b>  | Kn Qourront otri         | Sets the proportional gain    | 0.0~1000.0  | 100.0 | See  |
| P22.62         | kp@current_ctr           | for current control.          | [%]         | [%]   | 8.10 |
| <b>DOO 00</b>  | Ki @current_ctrl         | Sets the integral gain for    | 0.0~1000.0  | 100.0 | See  |
| P22.63         |                          | current control.              | [%]         | [%]   | 8.10 |
|                | Master alous rain        | Synchronization control       | 0.0~100.0   | 0     | See  |
| P22.64         | waster_slave gain        | gain                          | [%]         | 0     | 8.10 |
| D00.05         | MS Eiltor Timo           | Synchronization control       | 30~2000ms   | 50    |      |
| P22.05         |                          | filter time                   | 30°2000ms   | 50    |      |
| <b>DOD 00</b>  | Im @Acc. time            | Sets the load inertia.(in     | 0.01~300.00 | 0.75  |      |
| P22.98         |                          | units of time)                | [s]         | [s]   |      |
| <b>D</b> 00.00 | Pm @Eriction Loss Easter | Sate the friction loss factor | 0.00~10.00  | 0.00  |      |
| P22.99         | BIT WENCION LOSS FACIO   |                               | [%]         | [%]   |      |

## 7.23 Motor 4 Vector Control Set P23

| Par.NO | Parameter Name                | Description                                                                                                                                                                                                                         | Range                   | Default    | Ref.        |
|--------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|-------------|
| P23.0  | Dynamic Torque Control        | [0] Disabled<br>[1] Enabled                                                                                                                                                                                                         | 0~1                     | 0          | See<br>8.10 |
| P23.1  | Torque_Set Source             | <ul> <li>[0] Speed_Ctrl</li> <li>[1] AI 1</li> <li>[2] AI 2</li> <li>[3] Local Operator</li> <li>[4] Fixed Set:determined by<br/>the value of P23.3</li> <li>[5] Profibus DP</li> <li>[6] MODBUS</li> <li>[7] FREE BLOCK</li> </ul> | 0~7                     | 0          | See<br>8.10 |
| P23.2  | Torque_Set Source<br>@REV_DIR | Same as P23.1                                                                                                                                                                                                                       | 0~7                     | 0          |             |
| P23.3  | Trq_Set @Fixed_Value          | Sets the fixed value of torque.                                                                                                                                                                                                     | -300.0~<br>300.0<br>[%] | 0.0<br>[%] | See<br>8.10 |
| P23.4  | Trq_Set @FREE_BLOCK           |                                                                                                                                                                                                                                     | 0~300                   | 0          |             |
| P23.5  | Torque_Set Filter Time        |                                                                                                                                                                                                                                     | 0∼1000<br>[ms]          | 0<br>[ms]  |             |



| D23.6  | Torque, Set Weight                 |                                                                                                                                                                                                                                                            | 0.0~200.0        | 100.0        | See         |
|--------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------|
| 1 23.0 |                                    |                                                                                                                                                                                                                                                            | [%]              | [%]          | 8.10        |
| P23.7  | Torque Limit Source                | <ul> <li>[0] Internal Limit</li> <li>[1] Fixed SET: determined</li> <li>by the value of P23.3 and</li> <li>P21.9</li> <li>[2] AI 1</li> <li>[3] AI 2</li> <li>[4] LOCAL_SET</li> <li>[5]Profibus DP</li> <li>[6] MODBUS</li> <li>[7] FREE BLOCK</li> </ul> | 0~7              | 0            | See<br>8.10 |
| P23.8  | Torque Limit @Fwd<br>Direction     | This parameter is valid<br>when P23.7 being selected<br>[1].                                                                                                                                                                                               | 0.0~300.0<br>[%] | 200.0<br>[%] | See<br>8.10 |
| P23.9  | Torque Limit @Rev<br>Direction     | This parameter is valid<br>when P23.7 being selected<br>[1].                                                                                                                                                                                               | 0.0~300.0<br>[%] | 200.0<br>[%] | See<br>8.10 |
| P23.10 | Torque Limit<br>@FREE_BLOCK        |                                                                                                                                                                                                                                                            | 0~300            | 0            |             |
| P23.11 | Torque_Limit Filter Time           |                                                                                                                                                                                                                                                            | 0∼1000<br>[ms]   | 0<br>[ms]    |             |
| P23.12 | Kp_2x @Spd_Ctrl                    | Sets the proportional gain for high speed control.                                                                                                                                                                                                         | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P23.14 | Encoder Pulses numbers             | Sets the pulses number of motor per Rev                                                                                                                                                                                                                    | 0~60000          | 1024         |             |
| P23.15 | Encoder Phase Sequenc<br>e Reverse | [0]Disabled<br>[1]Enabled                                                                                                                                                                                                                                  | 0~1              | 0            | See<br>8.10 |
| P23.16 | Max. Speed                         | Sets the maximum speed<br>when in forward (valid only<br>when running in Vector<br>control mode).                                                                                                                                                          | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P23.17 | Max. Reverse Speed                 | Sets the maximum speed<br>when in reverse (valid only<br>when running in Vector<br>control mode).                                                                                                                                                          | 0.0~300.0<br>[%] | 100.0<br>[%] |             |
| P23.18 | Min. Speed                         | Sets the minimum speed<br>when in forward (valid only<br>when running in Vector<br>control mode).                                                                                                                                                          | 0.0~300.0<br>[%] | 0.0<br>[%]   |             |

7

| P23.19 | Min. Reverse Speed                              | Sets the minimum speed<br>when in reverse (valid only<br>when running in Vector<br>control mode).                                                                                 | 0.0~300.0<br>[%]  | 0.0<br>[%]   |             |
|--------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------------|
| P23.20 | Constant Power Speed<br>Limit Enabled           | [0]Disabled<br>[1]Enabled                                                                                                                                                         | 0~1               | 0            |             |
| P23.21 | Constant Power Speed<br>Limit Curve             | [0]PARABOLIC<br>[1]LINEAR                                                                                                                                                         | 0~1               | 0            |             |
| P23.22 | Speed Limit I @Min_Load                         | Valid only when running in<br>constant power control<br>mode.                                                                                                                     | 0.0~300.0<br>[%]  | 160.0<br>[%] |             |
| P23.23 | Min_Load @Spd_Lmt_I                             | Valid only when running in<br>constant power control<br>mode.                                                                                                                     | 0.0~200.0<br>[%]  | 20.0<br>[%]  |             |
| P23.24 | Speed Limit II<br>@Max_Load                     | Valid only when running in<br>constant power control<br>mode.                                                                                                                     | 0.0~300.0<br>[%]  | 100.0<br>[%] |             |
| P23.25 | Max_Load @Spd_Lmt_II                            | Valid only when running in<br>constant power control<br>mode.                                                                                                                     | 0.0~200.0<br>[%]  | 100.0<br>[%] |             |
| P23.26 | Position Loop Gain                              | Sets position loop gain.                                                                                                                                                          | 0.0~1000.0<br>[%] | 0.0<br>[%]   | See<br>8.10 |
| P23.27 | Position Loop SpeedCo<br>mpensation             | Position loop output limit<br>value, corresponding Max.<br>Speed regulating variable.                                                                                             | 0.00~15.00<br>[%] | 2.00<br>[%]  | See<br>8.10 |
| P23.28 | Speed Limit<br>@Torque_Control                  | <ul> <li>[0]Max. Speed Set: limited<br/>by the value of P23.16<br/>and P23.17</li> <li>[1]Ramp Function Input</li> <li>[2]Ramp Function Output</li> <li>[3]Profibus DP</li> </ul> | 0~3               | 0            |             |
| P23.30 | Speed Offset Source<br>(For toque control mode) | <ul> <li>[0]Fixed Offset: the speed<br/>offset determined by the<br/>value of P23.31 and<br/>P23.32</li> <li>[1]Al 1</li> <li>[2]Al 2</li> <li>[3]Local SET</li> </ul>            | 0~3               | 0            |             |
| P23.31 | FWD Speed_Offset                                | Sets foreward speed offset.                                                                                                                                                       | 0.0~100.0<br>[%]  | 5.0<br>[%]   |             |
| P23.32 | REV Speed_Offset                                | Sets reverse speed offset.                                                                                                                                                        | 0.0~100.0<br>[%]  | 5.0<br>[%]   |             |



Please visit the official website for more information: www.guide-edrive.com

|                | 1                      |                                 |                           |                  |             |
|----------------|------------------------|---------------------------------|---------------------------|------------------|-------------|
| P23.34         | Synchronal Compensatio | [0]Disabled<br>[1]Enabled       | 0~1                       | 0                | See<br>8.10 |
|                |                        | Sata field hold time after      | 0.0 - 100.0               | 0.0              |             |
| P23.35         | Field Hold Time        | stop                            | 0.0/~100.0<br>[e]         | 0.0<br>[s]       |             |
|                |                        | stop.                           | رە <u>ا</u><br>50 0~150 0 | [ <sup>3</sup> ] |             |
| P23.36         | Start Field Current    | Sets start field current value. | [%]                       | [%]              |             |
|                |                        |                                 | 0.0~150.0                 | 100.0            | See         |
| P23.37         | Base Field             | Sets the base field.            | [%]                       | [%]              | 8.10        |
|                |                        | Sets the end speed for base     | 0.0~100.0                 | 25.0             | See         |
| P23.38         | Base Field END_Speed   | field.                          | [%]                       | [%]              | 8.10        |
| <b>D</b> 00.00 | Ten Field              | Cata the tax field              | 0.0~120.0                 | 100.0            | See         |
| P23.39         | тор гіеіа              | Sels the top lield.             | [%]                       | [%]              | 8.10        |
| D00 40         | Ton Field START Speed  | Sets the start speed for top    | 0.0~150.0                 | 100.0            | See         |
| P23.40         | TOP FIELD START_Speed  | field.                          | [%]                       | [%]              | 8.10        |
| P23 /1         | Max Field              | Sets the maximum field          | 0.0~150.0                 | 135.0            |             |
| 1 20.41        |                        |                                 | [%]                       | [%]              |             |
| P23.42         | Torque Detection       | [0]Disabled<br>[1]Enabled       | 0~1                       | 1                |             |
| 022.42         | Targua Datastian Tima  | Sata targua dataction tima      | 25~1000                   | 75               |             |
| P23.43         | Torque Detection Time  | Sets torque detection time.     | [ms]                      | [ms]             |             |
|                |                        | Sets the time for weight        |                           |                  |             |
| 002.44         | Land Detection Time    | detection.( Valid only when     | 25~1000                   | 250              |             |
| P23.44         | Load Delection Time    | running in constant power       | [ms]                      | [ms]             |             |
|                |                        | control mode.)                  |                           |                  |             |
|                | FWD Torque @Zero       | Valid only when running in      | 0.0~100.0                 | 22.0             |             |
| P23.45         | Weight                 | constant power control          | [%]                       | [%]              |             |
|                | 5                      | mode.(Weight)                   |                           |                  |             |
| _              | REV Torque @Zero       | Valid only when running in      | 0.0~100.0                 | 18.0             |             |
| P23.46         | Weight                 | constant power control          | [%]                       | [%]              |             |
|                |                        | Mode.                           |                           |                  |             |
| D00 47         | FWD_Torque @Weight     | constant newer control          | 0.0~200.0                 | 92.0             |             |
| P23.47         | under Test             | mode                            | [%]                       | [%]              |             |
|                |                        | Valid only when running in      |                           |                  |             |
| D23 /8         | REV_Torque @Weight     | constant power control          | 0.0~200.0                 | 87.0             |             |
| 1 20.40        | under Test             | mode.                           | [%]                       | [%]              |             |
|                |                        | Valid only when running in      |                           | -                |             |
| P23.49         | Weight under Test      | constant power control          | 0.0~150.0                 | 100.0            |             |
|                |                        | mode.                           | [%]                       | [%]              |             |
|                | Кр                     | Sets the proportional gain      | 0.0~1000.0                | 100.0            |             |
| P23.51         | @OV_SUPRESSION_Ctrl    | for overvoltage suppression.    | [%]                       | [%]              |             |



| P23.52                 | Ki                         | Sets the integral gain for      | 0.0~1000.0      | 100.0      |      |
|------------------------|----------------------------|---------------------------------|-----------------|------------|------|
|                        | @OV_SUPRESSION_Ctrl        | overvoltage suppression.        | [%]             | [%]        |      |
| P23 53                 | Kn @field_ctrl             | Sets the proportional gain      | 0.0~1000.0      | 100.0      |      |
| 1 20.00                |                            | for field control.              | [%]             | [%]        |      |
| D22 54                 | Ki @field_ctrl             | Sets the integral gain for      | 0.0~1000.0      | 100.0      |      |
| F 20.04                |                            | field control.                  | [%]             | [%]        |      |
|                        | K @Snd Ctrl                | Sets the proportional gain      | 0.0~1000.0      | 100.0      | See  |
| P23.33                 |                            | for speed control.              | [%]             | [%]        | 8.10 |
| <b>D</b> 00 <b>C</b> 0 | K Mainht @Draka Otri       | Sets the gain for brake         | 0.0~1000.0      | 100.0      | See  |
| P23.56                 | K_weight @Brake_Ctri       | control when in forward.        | [%]             | [%]        | 8.10 |
|                        |                            | [0]Disabled                     |                 |            | See  |
| P23.57                 | Field Discharge Enabled    | [1]Enabled                      | 0∼1             | 0          | 8 10 |
|                        |                            |                                 |                 |            | -    |
| P23 58                 | Field Discharge Max. Cu    | Sets the Max. current value     | 0.0~125.0       | 100.0      | See  |
| 1 20.00                | rrent                      | for field discharge             | [%]             | [%]        | 8.10 |
|                        | Excitation after Field Dis | Sets excitation value after     | 1.0~25.0        | 2.5        | See  |
| P23.59                 | charge                     | field discharge stop            | [%]             | [%]        | 8.10 |
|                        | DROOP Control Gain         | DROOP is invalid when 0 is      | 0.0~100.0       | 0.0        | See  |
| P23.60                 |                            | set                             | [%]             | [%]        | 8.10 |
|                        |                            | Adiiust ROOP control            |                 |            |      |
|                        | DROOP Control Filter Ti    | response Increase the           | 30~2000         | 50         | See  |
| P23.61                 | me                         |                                 | 50 2000<br>[me] | 50<br>[ms] | 8 10 |
|                        |                            | value when vibrating and        | [III3]          | ling       | 0.10 |
|                        |                            | surging.                        |                 |            |      |
| P23 62                 | Kp@current_ctrl            | Sets the proportional gain      | 0.0~1000.0      | 100.0      | See  |
| . 20:02                |                            | for current control.            | [%]             | [%]        | 8.10 |
| P23 63                 | Ki@current_ctrl            | Sets the integral gain for      | 0.0~1000.0      | 100.0      | See  |
| 1 20.00                |                            | current control.                | [%]             | [%]        | 8.10 |
| P23 64                 | Master, slave gain         | Synchronization control gain    | 0.0~100.0       | 0          | See  |
| 1 20.04                |                            | Cynonionization control gain    | [%]             | Ũ          | 8.10 |
| P23 65                 | MS Filter Time             | Synchronization control filter  | 30~2000ms       | 50         |      |
| 1 20.00                |                            | time                            |                 |            |      |
|                        |                            | Sets the load inertia.(in units | 0.01~           | 0.75       |      |
| P23.98                 | Jm @Acc_time               | of time)                        | 300.00          | [s]        |      |
|                        |                            | ,                               | [s]             |            |      |
| P23.99                 | Bm @Friction Loss Factor   | Sets the friction loss factor.  | 0.00~10.00      | 0.00       |      |
|                        |                            |                                 | [%]             | [%]        |      |

### 7.24 MODBUS P32

**GUIDE** 

| Par.NO Parameter Name | Description | Range | Default | Ref. |
|-----------------------|-------------|-------|---------|------|
|-----------------------|-------------|-------|---------|------|

Please visit the official website for more information: www.guide-edrive.com

| P32.0               | MODBUS           | [0] Disabled<br>[1] Enabled      | 0~1   | 0   |            |
|---------------------|------------------|----------------------------------|-------|-----|------------|
| <b>Baa</b> <i>i</i> | MODBUS Slave     | According to the master station  | 4 055 | 1   |            |
| P32.1               | Station ID       | setting                          | 1~255 |     |            |
| <b>D</b> 30 0       | Port Selection   | [0]RS485                         | 0∼1   | 0   |            |
| F 32.2              |                  | [1]RS232                         | 0 1   | 0   |            |
|                     |                  | [0] 9600 BPS;                    |       |     |            |
|                     |                  | [1] 14400 BPS;                   |       |     |            |
|                     | Roud Data        | [2] 19200 BPS;                   |       |     |            |
| P32.3               |                  | [3] 38400 BPS;                   | 0~6   | 3   |            |
|                     | Selection        | [4] 56000 BPS;                   |       |     |            |
|                     |                  | [5] 57600 BPS;                   |       |     |            |
|                     |                  | [6] 115200 BPS;                  |       |     |            |
|                     |                  | [0] None_8_1_CFG;                |       |     |            |
|                     | Data Bits        | [1] Even_8_1_CFG;                |       |     |            |
| <b>B</b> 00 4       |                  | [2] Odd_8_1_CFG;                 | 0 5   | 0   |            |
| P32.4               | Checkout         | [3] None_8_2_CFG;                | 0~5   | 0   |            |
|                     |                  | [4] Even_8_2_CFG;                |       |     |            |
|                     |                  | [5] Odd_8_2_CFG;                 |       |     |            |
|                     |                  |                                  |       |     | When0s     |
|                     |                  | Sets Modbus bus fault detection  |       |     | is set,bus |
|                     | Modbus Bus Fault | time. Detection is disabled when | 0~100 | 0   | fault      |
| P32.5               | Detection Time   | 0 is set, and Modbus bus fault   | [s]   | [s] | detection  |
|                     |                  | will not be resulted.            |       |     | is         |
|                     |                  |                                  |       |     | disabled.  |
|                     | Modbus Bus       | Status Display: 0-bus normal;    |       |     |            |
| P32.6               | Status           | 1-bus fault                      | 0~1   | 0   |            |

#### 7.25 PROFIBUS DP P33

| Par.NO | Parameter Name     | Description                                  | Range | Default | Ref. |
|--------|--------------------|----------------------------------------------|-------|---------|------|
| P33.0  | COMMUNICATION      | [0] Disabled<br>[1] Enabled                  | 0~1   | 0       |      |
| P33.1  | STATION<br>ADDRESS | According to the PLC.                        | 1~255 | 1       |      |
| P33.2  | MODE               | [0]PPO 1<br>[1]PPO 2<br>[2]PPO 5<br>[3]GUIDE | 0~3   | 2       |      |

Please visit the official website for more information: www.guide-edrive.com

135

| P33.3  | MEMORY<br>@INVERTER IN       | According to the communication                                                                            | 0~16            | 14         |  |
|--------|------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|------------|--|
| P33.4  |                              | According to the communication                                                                            | 0~16            | 14         |  |
| P33.5  | ERROR ACTION                 | [0] FAULT -> EMERGENCY<br>STOP<br>[1] NORMAL STOP -> FAULT<br>[2] NORMAL STOP -><br>WARNING<br>[3] IGNORE | 0~3             | 0          |  |
| P33.6  | Error Delay Time             |                                                                                                           | 0∼1000<br>[ms]  | 50<br>[ms] |  |
| P33.7  | Error AUTO<br>RESET          | [0] Disabled<br>[1] Enabled                                                                               | 0~1             | 0          |  |
| P33.8  | Auto Reset Time              |                                                                                                           | 0.0~10.0<br>[s] | 3.0<br>[s] |  |
| P33.13 | INVERTER_IN<br>[W0]          | See Table 7.2                                                                                             | 0~37            | 0          |  |
| P33.14 | INVERTER_IN<br>[W0] @format  | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000                                                       | 0~4             | 0          |  |
| P33.15 | INVERTER _IN<br>[W1]         | See Table7-2                                                                                              | 0~37            | 0          |  |
| P33.16 | INVERTER _IN<br>[W1] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000                                                       | 0~4             | 0          |  |
| P33.17 | INVERTER _IN<br>[W2]         | See Table7-2                                                                                              | 0~37            | 0          |  |
| P33.18 | INVERTER _IN<br>[W2] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000                                                       | 0~4             | 0          |  |
| P33.19 | INVERTER_IN<br>[W3]          | See Table7-2                                                                                              | 0~37            | 0          |  |

Please visit the official website for more information: www.guide-edrive.com

| P33.20 | INVERTER _IN<br>[W3] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 0  |  |
|--------|------------------------------|-----------------------------------------------------|------|----|--|
| P33.21 | INVERTER _IN<br>[W4]         | See Table7-2                                        | 0~37 | 1  |  |
| P33.22 | INVERTER _IN<br>[W4] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 0  |  |
| P33.23 | INVERTER _IN<br>[W5]         | See Table7-2                                        | 0~37 | 18 |  |
| P33.24 | INVERTER _IN<br>[W5] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 2  |  |
| P33.25 | INVERTER _IN<br>[W6]         | See Table7-2                                        | 0~37 | 21 |  |
| P33.26 | INVERTER _IN<br>[W6] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×1000  | 0~4  | 1  |  |
| P33.27 | INVERTER _IN<br>[W7]         | See Table7-2                                        | 0~37 | 22 |  |
| P33.28 | INVERTER _IN<br>[W7] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×1000  | 0~4  | 1  |  |
| P33.29 | INVERTER_IN<br>[W8]          | See Table7-2                                        | 0~37 | 23 |  |
| P33.30 | INVERTER _IN<br>[W8] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 1  |  |
| P33.31 | INVERTER_IN<br>[W9]          | See Table7-2                                        | 0~37 | 0  |  |



| P33.32 | INVERTER _IN<br>[W9] @format  | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 0 |  |
|--------|-------------------------------|-----------------------------------------------------|------|---|--|
| P33.33 | INVERTER _IN<br>[W10]         | See Table7-2                                        | 0~37 | 0 |  |
| P33.34 | INVERTER _IN<br>[W10] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 0 |  |
| P33.35 | INVERTER_IN<br>[W11]          | See Table7-2                                        | 0~37 | 0 |  |
| P33.36 | INVERTER _IN<br>[W11] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 0 |  |
| P33.37 | INVERTER _IN<br>[W12]         | See Table7-2                                        | 0~37 | 0 |  |
| P33.38 | INVERTER _IN<br>[W12] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 0 |  |
| P33.39 | INVERTER_IN<br>[W13]          | See Table7-2                                        | 0~37 | 0 |  |
| P33.40 | INVERTER _IN<br>[W13] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×1000  | 0~4  | 0 |  |
| P33.41 | INVERTER_IN<br>[W14]          | See Table7-2                                        | 0~37 | 0 |  |
| P33.42 | INVERTER _IN<br>[W14] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~4  | 0 |  |
| P33.43 | INVERTER_IN<br>[W15]          | See Table7-2                                        | 0~37 | 0 |  |

| P33.44 | INVERTER _IN<br>[W15] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000                                        | 0~4  | 0 |  |
|--------|-------------------------------|--------------------------------------------------------------------------------------------|------|---|--|
| P33.45 | INVERTER _OUT<br>[W0]         | See Table7-3                                                                               | 0~48 | 0 |  |
| P33.46 | INVERTER _OUT<br>[W0] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0 |  |
| P33.47 | INVERTER_OUT<br>[W1]          | See Table7-3                                                                               | 0~48 | 0 |  |
| P33.48 | INVERTER _OUT<br>[W1] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0 |  |
| P33.49 | INVERTER_OUT<br>[W2]          | See Table7-3                                                                               | 0~48 | 0 |  |
| P33.50 | INVERTER _OUT<br>[W2] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0 |  |
| P33.51 | INVERTER_OUT<br>[W3]          | See Table7-3                                                                               | 0~48 | 0 |  |



| P33.52 | INVERTER _OUT<br>[W3] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0  |  |
|--------|-------------------------------|--------------------------------------------------------------------------------------------|------|----|--|
| P33.53 | INVERTER _OUT<br>[W4]         | See Table7-3                                                                               | 0~48 | 1  |  |
| P33.54 | INVERTER _OUT<br>[W4] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0  |  |
| P33.55 | INVERTER _OUT<br>[W5]         | See Table7-3                                                                               | 0~48 | 19 |  |
| P33.56 | INVERTER _OUT<br>[W5] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 2  |  |
| P33.57 | INVERTER_OUT<br>[W6]          | See Table7-3                                                                               | 0~48 | 26 |  |
| P33.58 | INVERTER _OUT<br>[W6] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 6  |  |
| P33.59 | INVERTER _OUT<br>[W7]         | See Table7-3                                                                               | 0~48 | 30 |  |
| P33.60 | INVERTER _OUT<br>[W7] @format  | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 1  |  |
|--------|--------------------------------|--------------------------------------------------------------------------------------------|------|----|--|
| P33.61 | INVERTER_OUT<br>[W8]           | See Table7-3                                                                               | 0~48 | 14 |  |
| P33.62 | INVERTER _OUT<br>[W8] @format  | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0  |  |
| P33.63 | INVERTER _OUT<br>[W9]          | See Table7-3                                                                               | 0~48 | 13 |  |
| P33.64 | INVERTER _OUT<br>[W9] @format  | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0  |  |
| P33.65 | INVERTER _OUT<br>[W10]         | See Table7-3                                                                               | 0~48 | 40 |  |
| P33.66 | INVERTER _OUT<br>[W10] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 6  |  |
| P33.67 | INVERTER _OUT<br>[W11]         | See Table7-3                                                                               | 0~48 | 0  |  |



| P33.68 | INVERTER _OUT<br>[W11] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0 |  |
|--------|--------------------------------|--------------------------------------------------------------------------------------------|------|---|--|
| P33.69 | INVERTER_OUT<br>[W12]          | See Table7-3                                                                               | 0~48 | 0 |  |
| P33.70 | INVERTER _OUT<br>[W12] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0 |  |
| P33.71 | INVERTER _OUT<br>[W13]         | See Table7-3                                                                               | 0~48 | 0 |  |
| P33.72 | INVERTER _OUT<br>[W13] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0 |  |
| P33.73 | INVERTER _OUT<br>[W14]         | See Table7-3                                                                               | 0~48 | 0 |  |
| P33.74 | INVERTER _OUT<br>[W14] @format | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000<br>[5][%]×1<br>[6][%]×10<br>[7][%]×100 | 0~7  | 0 |  |
| P33.75 | INVERTER _OUT<br>[W15]         | See Table7-3                                                                               | 0~48 | 0 |  |

| P33.76 | INVERTER _OUT<br>[W15] @format           | [0]×1<br>[1]×10<br>[2]×100<br>[3]×1000<br>[4]×10000 | 0~7 | 0 |  |
|--------|------------------------------------------|-----------------------------------------------------|-----|---|--|
|        | [W 15] @iomat [4]*10<br>[5][%]<br>[6][%] | [4]×10000<br>[5][%]×1<br>[6][%]×10                  |     |   |  |
|        |                                          | [7][%]×100                                          |     |   |  |

# Table 7.2: Description of INVERTER\_IN Words

| Value | <br>Description         |
|-------|-------------------------|
| 0     | NULL                    |
| 1     | CTW0                    |
| 2     | CTW1                    |
| 3     | CTW2                    |
| 4     | CTW3                    |
| 5     | CTW4                    |
| 6     | Encoder High Order [32] |
| 7     | Encoder Low Order[32]   |
| 8     | 32_MSW                  |
| 9     | 32_LSW                  |
| 10    | Digital Output          |
| 11    | PA_CTRL                 |
| 12    | PA 0 @32bit             |
| 13    | PA 1 @32bit             |
| 14    | PA 2 @32bit             |
| 15    | PA 3 @32bit             |
| 16    | PA 4 @32bit             |
| 17    | PA 5 @32bit             |
| 18    | Frequency Set [Hz]      |
| 19    | Speed Set [rpm]         |
| 20    | Speed Set [%]           |
| 21    | Torque Set [%]          |
| 22    | Torque Limit Set [%]    |
| 23    | Speed Limit Set [Hz]    |
| 24    | Active Currset Set [%]  |

| 25    | Reactive Current Set [%] |  |
|-------|--------------------------|--|
| 26    | AO1 Set [%]              |  |
| 27    | AO2 Set [%]              |  |
| 28    | Accel_Time_CTRL          |  |
| 29    | Decel_Time_CTRL          |  |
| 30~37 | SET_W12~19               |  |

Table 7.3: Description of INVERTER\_OUT Words

| Value | Description                 |
|-------|-----------------------------|
| 0     | NULL                        |
| 1     | STW0                        |
| 2     | STW1                        |
| 3     | STW2                        |
| 4     | STW3                        |
| 5     | STW4                        |
| 6     | STW5                        |
| 8     | PA 1 @32bit                 |
| 9     | PA 2 @32bit                 |
| 10    | PA 3 @32bit                 |
| 11    | PA 4 @32bit                 |
| 12    | PA 5 @32bit                 |
| 13    | Encoder High Order [32]     |
| 14    | Encoder Low Order[32]       |
| 15    | 32bit_MSW                   |
| 16    | 32bit LSW                   |
| 17    | Digital Input               |
| 18    | Digital Output              |
| 19    | Output Frequency            |
| 20    | Motor Speed [rpm] @Estimate |
| 21    | Motor Speed [rpm]           |
| 22    | DC-Link Voltage             |
| 23    | DC-Link Voltage @filter     |
| 24    | Тетр                        |
| 25    | Torque                      |
| 26    | Load Torque                 |

Please visit the official website for more information: www.guide-edrive.com

| 27    | RMS Current @A-phase |  |  |
|-------|----------------------|--|--|
| 28    | RMS Current @B-phase |  |  |
| 29    | RMS Current @C-phase |  |  |
| 30    | RMS Current          |  |  |
| 31    | Output Voltage       |  |  |
| 32    | Frequency Set        |  |  |
| 33    | AI 1                 |  |  |
| 34    | AI 2                 |  |  |
| 35    | Output Power         |  |  |
| 36    | Torque @filter       |  |  |
| 37    | Load @filter         |  |  |
| 38    | Load Weight          |  |  |
| 39    | Current_Peak_Detect  |  |  |
| 40    | Torque Set           |  |  |
| 41    | Mwh Motor            |  |  |
| 42    | Kwh Motor            |  |  |
| 43    | Mwh Generation       |  |  |
| 44    | Kwh Generation       |  |  |
| 45~48 | AW26~29              |  |  |



145

# 8. Specified parameter function description

## 8.1 Parallel running and panel observation setting

## Parallel running setting

Inverter greater than 450KW can be obtained by a combination of two inverters, for example, 800KW requires a combination of two 400KW inverters, then there is need to set the corresponding parameter P2.0(parallel running setting).

## 8.2 Digital input

## (1)Multi-speed control

Multi-speed command value to be set based on P12.0 (multi-speed setting mode) [0] Direct Step Input or [1] Bit Decoding.

A. [0] Direct Step Input

[1] RUN (Running forward) [2] RUN @REVERSE (Running reverse) --- segment 1

[6] M\_STEP1 (Bit 0) (Multi-speed terminal segment 1) --- 2

[7] M\_STEP2 (Bit 1) (multi- speed terminal segment 2) --- 3

[8] M\_STEP3 (Bit 2) (multi- speed terminal segment 3) --- 4

[9] M\_STEP4 (Bit 3) (multi- speed terminal segment 4) --- 5

GUIDE



Please visit the official website for more information: www.guide-edrive.com

## B. [1] Bit Decoding

The graphic below represents a speed of 16 stages (calculate with the 8421 decoding) that constituted of 4 multi-speed segments. When only input forward (FORWARD) or reverse (REVERSE) signals, it runs with the value that is greater in parameter P12.2 (multispeed 1 setting value) and the min. speed.



### (2)Brake switch status

When setting the DI to [22] BRAKE-SW STATUS, if the absolute value of motor speed is more than 10Hz, but the signal of DI is low, The errorcode will be E106. If the absolute value of motor speed is less than 10Hz, but the signal of DI is low in 2 second. The errorcode will be E107.

### 8.3 Digital output

### Brake release control

It is the inverter that controls the brake on / off signals when the motor is attached with braking function. Horizontal load brake signal is set as [1] running signal or [3] motor brake. Vertical load brake signal is set as [3] motor brake.

Please refer to the diagram for the output signal differences between [1] running signal and [3] motor brake:





If the above two conditions are met, there will output "brake off" signal.

## 8.4 Analog input



Analog input settings are shown below:

## 8.5 Analog output

Analog output settings are shown below:

GUIDE

8



(c) Output setting range is -100-100%

#### 8.6 Protection parameter

#### (1) Current limit function

P7.0, P7.1, P7.2, P7.3 current limit function: It is used to limit large current flowing through the motor. This function is activated when the motor current exceeds the limit value.

#### (2) Overcurrent protection function

P7.4, P7.5, P7.6, P7.7 overcurrent protection function: When the motor current exceeds the value that is the result of parameter P7.4 multiplied by the parameter P16.4, this function is activated to cut off the inverter output. This value is the percentage of motor rated current value.

(3) Zero sequence current protection P7.8, P7.9, P7.10, P7.11 zero sequence current protection value: sum of inverter output three-phase current:  $I_a + I_b + I_c$ ; motor rated current: P16.4, when meet the condition of  $\frac{(I_a + I_b + I_c)}{3} > P7.8 \times P16.4 \times 1.414$ 

, this function is activated and the inverter output will be shut off.

Note: the motor will report zero sequence current faults when there is a short circuit or grounding of three phases of motor.

(4) Bus over-voltage/under-voltage protection:

P7.12, P7.13 bus over-voltage or low voltage protection function: when bus voltage of the inverter exceeds the value of parameter P7.12, this function is activated and the output will be shut off. When bus voltage of the inverter is less than the value of parameter P7.12, this function is activated and the inverter output will be shut off. It is suggested to set as default setting value.

(5) Temperature protection

P7.14 temperature protection function: the inverter IGBT temperature exceeds the value of parameter P7.14, this function is activated and the inverter output will be shut off, inverter overtemperature faults will be reported.

P7.15 over-temperature alarm function: the inverter IGBT temperature exceeds the value of parameter P7.15, this function is activated but the inverter output will not be shut off.

(6) Over-speed protection

P7.19, P7.20, P7.21, P7.22 overspeed protection function: When the motor speed exceeds the value of parameter P7.19, this function is activated and the inverter output will be shut off. Value of P7.19 ~ P7.22 is the percentage of the motor rated speed value.

(7) Open-loop vector starting protection

GUIDE

P7.23 protection is available only in open-loop vector control mode (P16.11 = 1). When P7.23 is set to maximum, this protection function is prohibited. In open-loop vector control mode, if the starting torque is low or magnetic field is not established, the ability to follow a given motor speed is poor at the starting moment, and if the lasting time exceeds the set value of P7.23, this function is activated and the inverter output is shut off.

P7.24 ~ P7.26 protection is available only in the open-loop vector control mode

(P17.11=1、P18.11=1、P19.11=1) and just for some specific motors.

#### (8) Over-load protection function

P7.31, P7.32 overload protection: when the motor current exceeds the current protection value, this function is activated and the inverter output is shut off. Its protection parameters are shown as below:

P7.31, P7.32 abnormal speed protection function is available only in closed loop vector control mode (P16.11 = 2). P7.31 sets the deviation value of speed abnormality, 100% corresponding to the rated motor frequency. P7.32 sets the detection time of s peed abnormality. When the difference between the encoder detection speed and the reference speed exceeds the value set by P7.31, and run the time set by P7.32, this function is activated and the inverter output is shut off.

(9) Autotuning protection

P7.33 sets the autotuning failed time working in static autotuning operation. When the static autotuning time exceeds P7.33, this function is enabled, and the static autotuning is terminated.

#### (10) Overload protection function

P7.48, P7.50 overload protection: this function is activated when the motor current exceeds the current protection value, and the inverter output is shut off. Its protection parameters are shown as follows:



#### (11) Built-in brake unit

Parameter values of P7.64, P7.65, and P7.66 are valid only when the inverter has a built-in brake unit, which means inverter HF650 series of 160KW and below are valid with this function. Set P7.64 value as 1 to enable this function. If bus voltage is higher than the set value of P7.65, the brake unit is turned on. Brake full turn-on voltage value is determined by the value of P7.66, and brake full turn-on voltage value must be not less than the set value of brake start voltage, thus require P7.66≥P7.65.When P16.0 input voltage is set to 380V and P7.65 is 0V, the brake start voltage is 597V; whenP7.66 is 20V, the brake unit off voltage is 617V. Calculated as follows:

Brake start voltage value =  $1.075 \times \sqrt{2} \times P16.0 + 20 + P7.65$ ;

Brake full turn-on voltage value =  $1.075 \times \sqrt{2} \times P16.0 + 20 + P7.66$  .

#### (12) Overvoltage suppression function

The parameters of P7.69, P7.70,P7.71 can affect the actual motor deceleration time after functioning; when the P7.69 default value is 0, the inverter must be connected with the brake unit and resistance. When p16.0 input voltage is set to 380v, overvoltage suppression value is 611v. Calculation formula: overvoltage suppression value =  $1.1 \times \sqrt{2} \times P16.0 + 20 + P7.70$ . Specify as below:



when the P7.71 is "Enable", the software will changing the motor deceleration time and increasing motor field to realizeovervoltage suppression function; when the P7.71 is "Disable" the software will only changing the motor deceleration timetorealizeovervoltage suppression function.

#### 8.7 Motor start/stop control parameters

- (1) Stop mode
- P8.3 Stop mode: methods of setting motor speed deceleration when it stops. See the graphic below.
  - [0] Ramp parking: motor speed will be slowly decelerated until zero according to the set deceleration time.
  - [1] Free parking: While implementing stop mode, the inverter output voltage is immediately cut off at the same time.
- P8.6 Start delay time: from the moment the inverter commands "start", the inverter will remain "stop status" for a period of time within the set time value of P8.6, then the startup mode will be activated. See the graphic below:

Please visit the official website for more information: www.guide-edrive.com

P8.7 Stop state hold time: even if the motor speed turns to zero, in a period of time within this set parameter value, the inverter will still remain running mode, where there is still a torque output, only after such time of period then a real sense of parking will be achieved. See the graphic below:



Stop mode control graphic

#### (2) Acceleration/Deceleration control:

During the inverter is running, time and mode of acceleration/deceleration is adjustable. P8.14 is the multiplier of acceleration time adjustment, it means the actual acceleration time is the result of set acceleration time multiplying by the value of the of P8.14. P8.33 is the multiplier of deceleration time adjustment, it means the actual deceleration time is the result of set deceleration time multiplying by the value of the of P8.33.

Acceleration mode with multi-speed situations are shown as below:





When setting the value of the acceleration region, the following requirement must be obeyed:

8.15 <P8.17 <P8.19 <P8.21 <P8.23 <P8.25 <P8.27

Take the parameter settings for motor running with rated speed as an example:

| P8.15 | P8.17 | P8.19 | P8.21 | P8.23 | P8.25 | P8.27 |
|-------|-------|-------|-------|-------|-------|-------|
| 10%   | 20%   | 30%   | 50%   | 60%   | 80%   | 100%  |

Deceleration mode with multi-speed situations are shown as below:

8





When setting the value of the deceleration region, requirement as the parameter value P8.34<P8.36<P8.38<P8.40<P8.42<P8.44<P8.46 must be obeyed, otherwise it occurs to inverter as parameter setting error.

| P8.34 | P8.36 | P8.38 | P8.40 | P8.42 | P8.44 | P8.46 |
|-------|-------|-------|-------|-------|-------|-------|
| 10%   | 20%   | 30%   | 50%   | 60%   | 80%   | 100%  |

Take the parameter settings for motor running with rated speed as an example:

(3) Acceleration and deceleration adjustment:

During operation, the acceleration and deceleration time multiple can be modified with PROFIBUS or MODBUS communication.Set the acceleration time control sources by P8.13 and the deceleration time control sources by P8.32. It also can be disabled, so that this function does not work. Example:

Acceleration zone 1 acceleration time = P8.14 × P8.16 × (communication given time acceleration multiples × 0.001);

Deceleration zone 1 deceleration time =  $P8.33 \times P8.35 \times$  (communication given time deceleration multiples  $\times$  0.001).

### 8.8 Motor multi-speed and brake control

(1) The relations between termials and multi-speed

P12.2 ~ P12.17 multispeed is the speed reference values for setting inverter multi-speed operation. The following figure shows the relations between the multi-speed terminals and multi-speed segments by taking P12.0 = 1 as an example:

| Dunning cogmont | Multi-speed | Multi-speed | Multi-speed | Multi-speed |
|-----------------|-------------|-------------|-------------|-------------|
| Running segment | terminal 1  | terminal 2  | terminal 3  | terminal 4  |
| Multi-speed 1   | 0           | 0           | 0           | 0           |
| Multi-speed 2   | 1           | 0           | 0           | 0           |
| Multi-speed 3   | 0           | 1           | 0           | 0           |
| Multi-speed 4   | 1           | 1           | 0           | 0           |
| Multi-speed 5   | 0           | 0           | 1           | 0           |
| Multi-speed 6   | 1           | 0           | 1           | 0           |
| Multi-speed 7   | 0           | 1           | 1           | 0           |
| Multi-speed 8   | 1           | 1           | 1           | 0           |
| Multi-speed 9   | 0           | 0           | 0           | 1           |
| Multi-speed 10  | 1           | 0           | 0           | 1           |
| Multi-speed 11  | 0           | 1           | 0           | 1           |
| Multi-speed 12  | 1           | 1           | 0           | 1           |
| Multi-speed 13  | 0           | 0           | 1           | 1           |
| Multi-speed 14  | 1           | 0           | 1           | 1           |
| Multi-speed 15  | 0           | 1           | 1           | 1           |
| Multi-speed 16  | 1           | 1           | 1           | 1           |

0 represents the multi-speed terminal OFF 1 repr

1 represents multi-speed terminal ON

(2) Brake on/off control

P12.22 ~ P12.35 when using electromagnetic brake system, use this function to control the brake on/off. Only when digital output terminal is set as [3] MOTOR BRAKE, the brake control function will be effective.

When the motor is stopped, If the inverter receives running signal, it will give motor its corresponding torque values according to their forward and reverse directions. If the following conditions are met, there will be "brake off" signals on the brake control output relay or output terminals.

When the motor is running, if the inverter receives stop signal, the motor will start to decelerate. If the output frequency reaches parameter [brake on speed (Brake Closure @ speed)] values, there will be "brake on" signals on its corresponding output terminals.



Note: The torque and speed setting values to be set the on the basis of motor parameters in group P16.



## 8.9 Motor basic parameters and V/F control parameters

(1) Motor rated parameters

GUIDI

P16.0 ~ P16.9 motor parameters: In order to inverter the motor correctly, the motor parameters on the nameplate must be confirmed and the corresponding parameters of the inverter should be entered, if the motor parameters are incorrectly entered, it

may cause inverter abnormal and failure in auto-tuning. P16.7 the number of motor poles is set according to the following formula: Value 120 × P16.5/P16.6 and get rounded. P16.9 synchronous speed is set according to the following formula: 120xP16.5/P16.7.

When two motors are connected in parallel, values of P16.2 (rated power) and P16.4 (rated current) are the accumulated value of these two parameters on both motor nameplates.

### (2) Carrier frequency

P16.12 carrier frequency is mainly used to improve the motor running noise and inverter disturbance to surroundings.

The advantages of a high carrier frequency: the current waveform is relatively ideal, less current harmonics, and low motor noise;

The disadvantages of a high carrier frequency: the switching losses increase, the inverter temperature increases, the output capacity of the inverter is affected, while the inverter leakage current increases, and the inverter disturbance to surroundings increases. With high carrier frequency, it is necessary to derate the inverter.

Low carrier frequency is contrary to the above-mention, but if the carrier frequency is too low, it may cause instability in the low-frequency operation, reduced torque or even oscillation.

| Carrier<br>frequency | Electromagnetic noise  | Leaking current        | Heat value               |
|----------------------|------------------------|------------------------|--------------------------|
| 1KHz                 | The higher the carrier | The higher the carrier | The higher the carrier   |
| 5KHz                 | frequency, the smaller | frequency is, the      | frequency is, the higher |
| 10KHz                | noise is.              | current is.            | the heat value is.       |

The figure below shows the impact on the environment from carrier frequency:

The following table shows the relationship between the model and the carrier frequency:

| Model      | Carrier frequency(Factory value: KHz) |
|------------|---------------------------------------|
| 0.4KW~37KW | 5                                     |



| 45KW~160KW         | 3 |
|--------------------|---|
| 185KW $\sim$ 450KW | 2 |

(3) V/F curve selection

P16.14 Parameters are effective only in the V/F control (P16.11 = 0), for vector control is invalid.

- [0] Linear Curve V/F. It is applied to ordinary constant torque load.
- [1] Multi-point Curve V/F. V/F curve can be defined by setting parameters of (P16.33 ~ P16.45).
- [2] Square Curve V/F. It is suitable for variable torque load applications, such as: fans, pumps, etc.

All curves are shown as below:



P16.34 ~ P16.45 twelve parameters define multi-point V/F curve. V/F curve is usually set based on the load characteristics of the motors. Note: V1 <V2 <V3, F1 <F2 <F3. If the set value of low-frequency voltage is too high, it may cause the motor overheat and even burn down, and the inverter stalling or overcurrent protection.

### (4) Torque compensation

Calli

P16.15 torque compensation is valid only in the V/F control mode. This parameter is enabled when the starting torque is a little bit low. But this parameter can be enabled only after the static auto-tuning has been completed in V/F control mode. Enabling this parameter will increase starting current and starting voltage, over-current phenomenon may occur. It is suggested to enable this parameter only when a large amount of starting torque (mixer, brick kiln, etc.) is required.

(5) Start excitation current

When P16.14= [0] line V/F curve, V/F start compensating voltage setting value is p16.30. P16.26 and P16.27 can be set with reference to the following figure:



When P16.14= [2] square curve, V/F start compensating voltage setting value is p16.30. P16.30 and P16.27 can be set with reference to the following figure:



(6) DC Brake

P16.50-P16.56 DC brake function. It is classified as start DC brake and stop DC brake. This feature works only under V / F control mode.

Start DC brake: Set P16.50, P16.51, P16.52 values, which is used to add DC brake current to the motor that is in free slide till stop, enable motor to stop first and then to start.



Stop DC brake: Set P16.54, P16.55, P16.56 values, which is used to add DC brake current to the motor that is in deceleration, enable the motor to stop. The specific settings are shown as below:



(7) Resonance suppression

P16.64 (stabilization suppression) is the parameters set to eliminate mechanical or electrical resonance automatically. If the setting value is not zero, the stability controller can eliminate resonance caused by mechanical or electrical reasons. If the setting value is zero, the controller would not act.

#### 8.10 Motor vector control parameters

GUIDF

#### (1) Switch between torque and speed:

P20.0 represents the parameter value to be set for torque control and speed control switch.

When P20.0 = 0 and P20.1 = 0, P20.2 = 0, it is in speed control mode, it is impossible to switch into torque control mode under this setting.

When P20.0 = 0 and P20.1 $\neq$ 0, P20.2 $\neq$ 0, it is in torque control mode, it is impossible to switch into speed control mode under this setting.

When P20.0 = 1 and P20.1 $\neq$ 0, P20.2 $\neq$ 0, it is in torque control mode if the torque and speed switching signal is set as 1 while it is in speed control mode if the switching signal is set as 0.

When it is in torque control, if the motor output torque is greater than the load torque, the motor speed will gradually increase to balance value or limit value; if the motor output torque is smaller than the load torque, the motor speed will gradually decrease to balance value or minus limit value. In order to ensure the torque control, it is necessary first to enable normal operation under P16.11 [1] S / L Vector Control or [2] CL Vector Control mode.

P20.3 fixed torque value setting: This parameter is valid only after setting parameter P20.1 as [4].

## (2) Zero Torque:

This function is actived by DI or communication ,and the given torque is set to 0 in torque control mode. When the signal is low, the inverter automatically switch to speed control mode and traces the current speed to given speed. Set P12.24 and P12.25 to 0 when enabling this function.

## (3) Torque limitation:

P20.7 is the setting source for the torque limitation; the setting value is valid both in speed control and torque control modes. P20.8, P20.9 value is only valid when P20.7 = 1.

### (4) Encoder direction

P20.15 encoder reverse phase sequence function: when the motor is forward turning, it enables encoder output A or B phase ahead. Such as if encoders A, B are reversed connected, or motor U, V, W phase are reversed connected, it may change the phase sequence by modifying the parameter without changing the wiring.

[0]When it is not enabled, the encoder rotation direction is consistent with the motor rotation direction;

[1] When it is enabled, if the encoder rotation direction is opposite to the motor rotation direction, the inverter can automatically mutually exchange the A-phase and B-phase identification functions.

## (5) Synchronous compensation control:

When two motors are non-rigidly connected driving one load, adjust one of the motors speed, so that the two motors can maintain position balance function. This function is available only in closed-loop vector control, and must be synchronized with

#### GDHF-PGD2 PG card.

Only one of the inverters controling the two motors (inverter mounted with GDHF-PGD2 synchronous PG card) need to have effective synchronous compensation control. When DI function "[10] hook mode" is valid or DP control "CW0.9 hook mode" is valid, set P20.26 and P20.27 values are greater than 0, the two motors are ON, and after the other motor speed is up to 2% of rated speed, the synchronous compensation control begins to operate.

When P20.34 is set to [0], the synchronal compensation control algorithm 1 controls the encoder pulse error of the two motors to minimum 0 pulses. When P20.26 and P20.27 is set to a value greater than 0, adjust the synchronization compensation control response. P20.26 is generally recommended to set to 50% ~ 100%, and P20.27 is set to 3% to 5%.

When P20.34 is set to [1], the synchronal compensation control algorithm 2 controls the encoder pulse error of the two motors to minimum 200 pulses. Since the control algorithm is internally fixed, P20.26 and P20.27 can just be set to any value greater than 0.

If the two inverters are Guide HF650 series, P20.34 is recommended to set [1]; if one is GuideHF650 series inverter, and the other one is the other brand inverter, P20.34 is recommended to set [0].

#### (6) DROOP control:

When two motors are rigidly connected driving one load, stabilize the motor torque to achieve load balancing capabilities between the two motors. The DROOP control function of the inverters controlling two motors must be valid. DROOP control decelerates the motor during over load torque, and accelerates it during low load to maintain load balancing. When P20.60 is set to 0, DROOP control is invalid. P20.61 is adjustable parameters of adjusting DROOP control response, increasing this setting when vibrating and oscillating.

#### (7) Master-Slave control1:

GUIDE

When two inverters control two rigid coupling motors(such as RTG hoisting mechanism, slewing mechanism),one of them is chosen as the master,which adopts speed control,the other is slave, which adopts torque control.The output torque of the master is transmitted to slave as the given torque of slave.

#### (8) Master-Slave control2:

When two inverters control two rigid coupling motors(such as RTG hoisting mechanism, slewing mechanism),both inverters adopts speed control. One of them is chosen as master and the other is slave. The output torque of the master is transmitted to slave through AI,but not as the given torque of slave.

#### (9) Anti Grab Open Function

This function prevents grab opening, when two inverters are balancing load torque in air, and the driver return the handle to zero. The encoder wire of the supporting machine should be connected to the PGD2 card of the opening machine . The opening machine receives the the speed signals of two motors at the same time. The PLC activates this function after have closed grab and disable this function after have balanced load torque. This function is activated by DI or DP communication control word CW0.10.

#### (10) Start magnetic current:

P20.36 start magnetic current: It controls the basic limit of field during starting, and the start current can be reduced undervector control as shown below:



#### (11) Magnetic flux:

P20.37 ~ P20.40 is used to set the size of the magnetic field based on its corresponding speed, it is shown as below:



#### (12) Field discharge function:

P20.57, P20.58 and P20.59 are the field discharge functions which can demagnetize quickly. When P20.57 is set to 1, this function is enabled. P20.58 is the maximum current value of the magnetic field demagnetization phase. After demagnetization phase begins, the field discharge function stops when the magnetic field is less than the actual value of P20.59.

#### (13) Speed ring:

P20.55 speed tracking controller proportional gain: the high torque controller output increases with the speed error increases. If the set value is relatively high, then the speed deviation decreases rapidly.

P20.59 speed tracking controller integral gain: it refers to the time spent on speed controller output rated torque command during constant velocity error persists. If the set value is relatively low, then the speed deviation decreases rapidly.

The speed controller gain set by percentage (%) can be obtained by auto-tuning. Speed control block is shown as follows:



#### (14) Current ring:

(-1.)))

P20.62 and P20.63 represent the current loop proportional and integral gain. The current controller gain is set with percentage (%) value, which can be obtained by auto-tuning. Vector control block is shown as follows:



## 8.11 Advanced application

During operation, if problems occur, such as vibration or imbalance that caused by the control performance failure, please adjust the corresponding control mode parameters in the following table, which only lists some frequently modified parameters.

| Control        | Parameter                               | Performance                                                                                | Default            | Recom.                                                                                                                     | Adjustment                                                                                                                                                                               |
|----------------|-----------------------------------------|--------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mode           | name                                    | 1 chomanee                                                                                 | value              | value                                                                                                                      | method                                                                                                                                                                                   |
|                | P16.64<br>V/F<br>Stabilization<br>@Gain | To suppress<br>medium<br>speed (10 ~<br>40HZ)<br>disorderly<br>adjustment<br>and vibration | 100                | 80~150                                                                                                                     | Reduce the value of this<br>parameter for improving<br>insufficient heavy load<br>torque;<br>Increase the value of this<br>parameter for improving<br>vibration occurs at light<br>load. |
| V/F<br>control | P16.12<br>PWM<br>@Carrier<br>Frequency  | To improve<br>motor<br>megnatic<br>noise.                                                  | Power<br>dependent | Different<br>values for<br>different<br>power values<br>(Redo<br>auto-tuning if<br>the carrier<br>frequency is<br>changed) | Increase the value of this<br>parameter for reducing<br>motor megnatic noise;<br>Reduce the value of this<br>parameter for improving<br>vibration occurs at<br>low/medium speed.         |
|                | P16.15<br>Torque<br>Compensation        | To improve<br>the motor<br>torque.                                                         | Disable            | Disable                                                                                                                    | Enable this parameter for<br>improving insufficient<br>heavey load torque and low<br>speed.                                                                                              |



|         |                                        |                                           |                    |                | Disable this parameter for   |
|---------|----------------------------------------|-------------------------------------------|--------------------|----------------|------------------------------|
|         |                                        |                                           |                    |                | improving vibration occurs   |
|         |                                        |                                           |                    |                | at light load                |
|         |                                        |                                           |                    |                | Increase the value of this   |
|         |                                        |                                           |                    |                | parameter for improving      |
|         |                                        | To improve                                |                    |                | insufficient low speed       |
|         | P16.26                                 | low speed                                 | 0.75               | 0.5~1.2        | torque;                      |
|         | V/F DC offset                          | torquo                                    | 0.75               | 0.0 1.2        | Reduce the value of this     |
|         |                                        | lorque.                                   |                    |                | parameter for improve great  |
|         |                                        |                                           |                    |                | surge at start.              |
|         |                                        |                                           |                    |                | Increase the value of this   |
|         |                                        |                                           |                    |                | parameter for improving      |
|         |                                        | Ta imprava                                |                    |                | motor slow respond speed     |
|         | P7.0                                   | to improve                                | 450                | 450 000        | and imbalance at heavy       |
|         | Current Limit                          | current                                   | 150                | 150~220        | load;                        |
|         |                                        | surge.                                    |                    |                | Reduce the value of this     |
|         |                                        |                                           |                    |                | parameter for improve great  |
|         |                                        |                                           |                    |                | current surge at light load. |
|         |                                        |                                           |                    | Different      | Increase the value of this   |
|         |                                        | To improve<br>motor<br>megnatic<br>noise. | Power<br>dependent | values for     | norease the value of this    |
|         | P16.12<br>PWM<br>@Carrier<br>Frequency |                                           |                    |                | motor megnatic noise:        |
|         |                                        |                                           |                    | (Redo          | Reduce the value of this     |
|         |                                        |                                           |                    | auto-tuning if | parameter for improving      |
|         |                                        |                                           |                    | the carrier    | vibration occurs at          |
|         |                                        |                                           |                    | frequency is   | low/medium speed.            |
|         |                                        |                                           |                    | changed)       |                              |
|         |                                        |                                           |                    |                | Increase the value of this   |
|         |                                        | To improve                                | 150                | 450 000        | parameter for improving      |
|         |                                        |                                           |                    |                | and imbalance at heavy       |
|         | P7.0<br>Current Limit                  |                                           |                    |                | load:                        |
| Vector  |                                        | current                                   |                    | 150~220        | Reduce the value of this     |
| control |                                        | surge.                                    |                    |                | parameter for improve        |
|         |                                        |                                           |                    |                | motor great current surge at |
|         |                                        |                                           |                    |                | light load                   |
|         |                                        |                                           |                    |                | Increase the value of this   |
|         |                                        |                                           |                    |                | parameter for improving      |
|         | P20.43                                 | To improve                                |                    |                | motor vibration at load      |
|         | Load                                   | motor                                     |                    |                | condition;                   |
|         | Detection                              | vibration and                             | 75                 | 50~100         | Reduce the value of this     |
|         | Time                                   | imbalance.                                |                    |                | parameter for improve        |
|         |                                        |                                           |                    |                | motor torque slow respond    |
|         |                                        |                                           |                    |                | at load vary condition.      |
|         | P20.56                                 | To improve                                |                    |                | Increase the value of this   |
|         | Ki @Spd_Ctrl                           | speed and                                 | 100                | 80~150         | parameter for improving low  |
|         |                                        | torque                                    |                    |                | speed and slow torque        |



Please visit the official website for more information: www.guide-edrive.com

| r |               |                             |
|---|---------------|-----------------------------|
|   | respond, to   | respond;                    |
|   | suppress      | Reduce the value of this    |
|   | vibration and | parameter for improve great |
|   | disorderly    | surge at start.             |
|   | adjustment.   |                             |



# 9. Abnormality solutions and inspection

To protect equipment, the inverter has over current, over voltage, under voltage, etc protection functions. When protection function is activated, the inverter output will be cut off and the motor will stopp until a compulsory reset (RESET) is performed.

## 9.1 Alarm codes

| Codes | Alarm information | Alarm causes                                                                                                                                                                   | Measurements                                                                                                                                                               |
|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W01   | SYS_NOT_RDY       | The inverter is not ready when it is energized.                                                                                                                                | Confirm the inverter input voltage and bus voltage.                                                                                                                        |
| W02   | NO_DRV_ENABLE     | When set digital termnals as<br>[Inverter ENABLE], its<br>corresponding conditions are<br>not satisfied. There is no<br>signal in corresponding<br>communication control word. | Confirm the digital input<br>parameter of parameter group<br>P3, and its corresponding<br>external electric relay and<br>wiring. Confirm the<br>communication word status. |
| W03   | LOCAL_EM          | When set digital termnals as<br>[Local_Emergency], its<br>corresponding conditions are<br>not satisfied.                                                                       | Confirm the digital input<br>parameter of parameter group<br>P3, and its corresponding<br>external electric relay and<br>wiring.                                           |
| W04   | REMOTE_EM         | When set digital termnals as<br>[Remote_Emergency], its<br>corresponding conditions are<br>not satisfied.                                                                      | Confirm the digital input<br>parameter of parameter group<br>P3, and its corresponding<br>external electric relay and<br>wiring.                                           |
| W06   | ОТ                | Overheat in inverter. The<br>temperature of heatsink has<br>reached the value of<br>P7.14(Over Temperature Trip).                                                              | Confirm the casing<br>temperature, cooling fan and<br>load current.                                                                                                        |
| W09   | P/B ALARM         | DP Card communication external alarm.                                                                                                                                          | Confirm the status of DP<br>communication corresponding<br>control position.                                                                                               |
| W10   | MODBUS ALARM      | Modbus communication external alarm.                                                                                                                                           | Confirm the status of Modbus corresponding control position.                                                                                                               |
| W15   | PARAMETER         | Fault in parameter settings                                                                                                                                                    | Confirm whether the parameter setting is out of range.                                                                                                                     |

The alarm codes will be shown in stop status.

| Codes | Alarm information | Alarm causes                                                                 | Measurements                                                                                                                                              |
|-------|-------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| W18   | Temp_Sensing Fail | Fault and warning of tempreture sensing.                                     | Confirm temperature sampling<br>cable;<br>Confirm the communication<br>between power panel and<br>control panel;<br>Confirm the power panel is<br>normal. |
| W20   | SLV_NOT_RDY       | There is abnormality in slave<br>inverter during parallel<br>running.        | Confirm the parallel running control line, whether the slave inverter is in normal state.                                                                 |
| W21   | SLV1_CAN_ERR      | There is abnormality in slave 1<br>communication during parallel<br>running. | Confirm the parallel running<br>communication line, whether<br>the slave inverter is in normal<br>state.                                                  |

### 9.2 Error codes

The error codes will be shown in running status.

| Error<br>code | Error information           | Error causes and measurment                                                                                                                        |
|---------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| [E051]        | U phase<br>ERR_UT not reset | Confirm the IGBT is normal;<br>Confirm the IGBT drive wire and drive circuit is<br>normal;<br>Power on again after power failure.                  |
| [E053]        | V phase<br>ERR_UT not reset | Confirm the IGBT is normal;<br>Confirm the IGBT drive wire and drive circuit is<br>normal;<br>Power on again after power failure.                  |
| [E054]        | W phase<br>ERR_UT not reset | Confirm the IGBT is normal;<br>Confirm the IGBT drive wire and drive circuit is<br>normal;<br>Power on again after power failure.                  |
| [E056]        | ERR_SLAVE_FAULT not reset   | Confirm the slave inverter is normal;<br>Slave inverter power on again after power off.                                                            |
| [E057]        | ERR_DB not reset            | Confirm the IGBT is normal;<br>Confirm the IGBT drive wire and drive circuit is<br>normal;<br>Power on again after power failure.                  |
| [E100]        | OV                          | Confirm the braking resistor;<br>Confirm the parameter P8.35(DecT 1) and<br>adjust itstime;<br>Confirm the parameter P7.12(busbar over<br>voltage) |



| [E105] | UV               | Input voltage drop will cause the bus voltage<br>drops to the limit values or the input voltage<br>phase loss;<br>Confirm the input voltage;<br>Confirm the inverter input side magnetic<br>contactor;<br>Check the parameter P7.13 (bus undervoltage)                     |
|--------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [E106] | Brake abnormal 1 | Check whether DI wiring are normal.<br>Check whether the brake is normal.                                                                                                                                                                                                  |
| [E107] | Brake abnormal 2 | Check whether DI wiring are normal.<br>Check whether the brake is normal.                                                                                                                                                                                                  |
| [E108] | DC switch open   | Check whether DC switch and its wiring are normal.                                                                                                                                                                                                                         |
| [E109] | DC15V fail       | Check whether the power 15V and its wiring are normal.                                                                                                                                                                                                                     |
| [E110] | OC               | Check motor load.<br>Check whether the brake is off.<br>Confirm the acceleration/deceleration time.<br>Check whether the motor and its wiring are<br>normal.<br>Confirm whether the encoder and its wiring are<br>normal<br>Confirm parameter P7.4 (Over Current Trip).    |
| [E111] | OL               | The inverter output current exceeds P7.48<br>(Over-Loaded Current) value. and the time<br>exceeds P7.49 (OL Time) value.<br>Check the motor load.<br>Check the load current.<br>Confirm parameter P7.48, P7.49.<br>Confirm whether the motor and its wiring are<br>normal. |
| [E112] | ZC               | Confirm parameter P7.8.<br>Confirm whether the motor is short circuited.<br>Confirm that the inverter is properly grounded.<br>Confirm whether the current sensor wiring is<br>normal.                                                                                     |
| [E113] | MIP              | Confirm whether the inverter input wiring is<br>normal.<br>Confirm whether the linear filtering control<br>board control cable is properly connected.                                                                                                                      |
| [E114] | MOP              | Confirm whether the connection of the inverter output line to the motor is normal.                                                                                                                                                                                         |
| [E115] | OS               | Motor speed exceeds parameter P7.19 value.<br>Confirm parameter P7.19.<br>Confirm whether the encoder is good and the circuit is not interfered.                                                                                                                           |



| [E116] | SLVC Fail         | Confirm whether the acceleration and deceleration time is too short.<br>Confirm the parameter P7.23                                                                                                                        |
|--------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [E117] | MOTOR STALL       | Check the brake connection.<br>If there is encoder connection, confirm whether<br>the encoder connection and settings P20.14<br>and P20.15 are correct.                                                                    |
| [E118] | PG ERROR          | Confirm whether the encoder electrical connection and settings P20.14, P20.15 is correct.                                                                                                                                  |
| [E119] | SPEED ABNORMAL    | Confirm whether the encoder electrical connection and settings P20.14, P20.15 is correct.<br>Confirm the parameter P7.31 and P7.32                                                                                         |
| [E120] | ОТ                | Confirm the external and internal temperature.<br>Confirm the inverter cooling fan.                                                                                                                                        |
| [E138] | TEMP_SENSING FAIL | Check the load current.<br>Confirm the tempreture sampling connection<br>line.<br>Confirm the connection between the power<br>panel and control panel.<br>Confirm whether the power panel is normal.                       |
| [E152] | PDP [U]           | Confirm the IGBT is normal;<br>Confirm the IGBT drive wire and drive circuit is<br>normal;<br>Confirm whether the output wiring or motor is<br>normal.                                                                     |
| [E154] | PDP[V]            | Confirm the IGBT is normal;<br>Confirm the IGBT drive wire and drive circuit is<br>normal;<br>Confirm whether the output wiring or motor is<br>normal.                                                                     |
| [E155] | PDP [W]           | Confirm the IGBT is normal;<br>Confirm the IGBT drive wire and drive circuit is<br>normal;<br>Confirm whether the output wiring or motor is<br>normal.                                                                     |
| [E156] | Hardware OC       | Check motor load.<br>Check whether the brake is off.<br>Confirm the acceleration/deceleration time.<br>Check whether the motor and its wiring are<br>normal.<br>Check whether the output current of inverter is<br>normal. |
| [E157] | PDP [DB]          | Confirm whether the power element is normal.<br>Confirm whether the power element inverter<br>wire and its inverter circuit are normal.                                                                                    |
| [E160] | SLAVE FAULT       | Confirm whether there is fault in the slave inverter.                                                                                                                                                                      |



| [E161] | SLV_NOT_RDY       | Confirm whether the slave inverter running conditions are satisfied.                                                                                                                                                                         |
|--------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [E162] | SLV1_CAN_ERR      | Confirm whether the parallel running optical cable and slave inverter communication is normal.                                                                                                                                               |
| [E167] | CAN_ERR           | Confirm whether the inverter communication is normal.                                                                                                                                                                                        |
| [E170] | MOTOR TUNING FAIL | Confirm the motor nameplate parameters.<br>Confirm the parameter P7.33                                                                                                                                                                       |
| [E180] | P/B ERROR         | Confirm whether the communication card<br>connection is normal.<br>Confirm whether the communication<br>configuration is correct.                                                                                                            |
| [E181] | P/B_EM            | Confirm the status of communication control word CW0.4.                                                                                                                                                                                      |
| [E200] | LOCAL_EM          | Confirm whether the communication card connection is normal.                                                                                                                                                                                 |
| [E201] | REMOTE_EM         | When digital input terminal is set as<br>[Local_Emergency], there should be a signal in<br>its corresponding terminal. Confirm the<br>parameter group P3 digital input parameters,<br>and its corresponding external relays and<br>wiring.   |
| [E202] | MODBUS EMERGENCY  | When digital input terminal is set as<br>[Remotel_Emergency], there should be a signal<br>in its corresponding terminal. Confirm the<br>parameter group P3 digital input parameters,<br>and its corresponding external relays and<br>wiring. |
| [E203] | DRIVE DISABLED    | There is signal on Modbus communication control word CW0.4. Confirm its status.                                                                                                                                                              |
| [E210] | Panel Error       | Confirm whether the keyboard wiring is normal.                                                                                                                                                                                               |
| [E220] | MEMORY CRC ERR    | Change the control panel.                                                                                                                                                                                                                    |
| [E221] | PARAMETER ERROR   | Confirm the parameter settings meet the requirement.                                                                                                                                                                                         |

# 9.3 Error diagnosis

| Error          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inspection items                                                                                                                                                                                                      | Measurements                                                                                                                                                                                                                                                                                   |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Whether the digital input terminals are well distributed.</li> <li>Whether the running command signal is ON.</li> <li>Whether forward or reverse terminals are well contacted with COM terminals.</li> </ul> | <ul> <li>Confirm that the digital terminals are well distributed</li> <li>The running command signal is ON.</li> <li>Confirm the forward and reverse terminals are well connected with COM terminals (Select terminal mode).</li> </ul>                                                        |
|                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •Whether the input 3P power supply is normal.                                                                                                                                                                         | <ul> <li>Confirm the tighten state of terminal screws.</li> <li>Measure the input 3P terminal voltage.</li> </ul>                                                                                                                                                                              |
| Motor          | output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •Whether the operation panel power<br>light is ON. If yes, then confirm<br>whether the running signal light is ON.                                                                                                    | <ul> <li>Re-plug the wire if the operation panel power light is not ON. Please consult the agent or our company if still no improvement after re-plug.</li> <li>If the operation panel power light is ON, but the running signal light is off, please give a run command once more.</li> </ul> |
| no<br>rotation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •Whether warnings or error messages are displayed on the operation panel.                                                                                                                                             | •Re-run after reset.                                                                                                                                                                                                                                                                           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •Whether the inverter operation mode and command value are correct.                                                                                                                                                   | •Confirm the inverter operation mode parameters.                                                                                                                                                                                                                                               |
|                | <ul> <li>Whether the motor is in "BRAKE OI state or whether the load is too heaver the load is too heaver whether a brake is attached to the motor, whether the brake action normal.</li> <li>Whether the motor wiring is normal whether there is phase loss on moto whether there is phase loss on moto whether the inverter output currer value is greater than or equal to the current limitation value.</li> <li>When a magnetic contactor equipped between the inverter are the motor, whether the contactor ON.</li> </ul> | •Whether the motor is in "BRAKE ON" state or whether the load is too heavy.                                                                                                                                           | <ul><li>Release the brake and reduce the load.</li><li>Try running the motor alone.</li></ul>                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •Release the brake carefully and re-run.                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •Whether the motor wiring is normal or whether there is phase loss on motor.                                                                                                                                          | •Confirm the inverter ouput and motor output connection status.                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •Whether the inverter output current value is greater than or equal to the current limitation value.                                                                                                                  | •Confirm the correct parameter<br>settings and try adjusting<br>acceleration and deceleration time<br>to increase the speed slowly.                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •When a magnetic contactor is<br>equipped between the inverter and<br>the motor, whether the contactor is<br>ON.                                                                                                      | •Confirm that the magnetic contactor is ON and its wiring state.                                                                                                                                                                                                                               |
| Motor rotates  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •Whether the wiring between the inverter output 3P and the motor is normal.                                                                                                                                           | •Exchange V phase and W phase.                                                                                                                                                                                                                                                                 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •Whether the terminals that connected                                                                                                                                                                                 | •Confirm the wiring of                                                                                                                                                                                                                                                                         |

| Error                                        | Inspection items                                                                                                                                                      | Measurements                                                                                                                                                                                                                  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | to control circuit and its parameter                                                                                                                                  | forward/reverse terminals and                                                                                                                                                                                                 |
|                                              | settings are normal.                                                                                                                                                  | parameter values.                                                                                                                                                                                                             |
| The motor speed<br>can not be<br>increased.  | •Whether the load is too heavy.                                                                                                                                       | <ul> <li>Reduce the load.</li> <li>If the motor is overloaded, then start its limitation function to reduce the speed to a value that is less than the setting value.</li> <li>Release the load or reduce the load</li> </ul> |
|                                              | •Whether the speed command signal                                                                                                                                     | •Confirm the control circuit wiring or                                                                                                                                                                                        |
|                                              | is normal.                                                                                                                                                            | its signal and the setting value.                                                                                                                                                                                             |
| There is motor<br>shaking during<br>running. | <ul> <li>Whether the load varieties are too large.</li> <li>Whether the input voltage changes too much.</li> <li>Whether it occurs in a certain frequency.</li> </ul> | <ul> <li>Raise the motor and the inverter power to the next higher level.</li> <li>Reduce the load and input voltage changes</li> <li>Adjust slightly the output frequency setting values.</li> </ul>                         |
|                                              | •The voltage drops when input voltage.                                                                                                                                | •Confirm the inverter input power supply.                                                                                                                                                                                     |
|                                              | <ul> <li>Whether the load is too heavy.</li> </ul>                                                                                                                    | <ul> <li>Release or reduce the load.</li> </ul>                                                                                                                                                                               |
| Motor current excceds the rated              | •Whether the motor is in "BRAKE ON" state.                                                                                                                            | •Release the brake on the motor.                                                                                                                                                                                              |
| values.                                      | •Whether the load is dynamic(the                                                                                                                                      | •Re-confirm the inverter power                                                                                                                                                                                                |
|                                              | weight is changable)                                                                                                                                                  | calculation.                                                                                                                                                                                                                  |
|                                              | •Whether the motor have completed the auto-tuning normally.                                                                                                           | •Redo motor auto-tuning.                                                                                                                                                                                                      |


## 10. Maintenance





#### **10.1 Maintenance instructions**

As the inverter is a typical product that contains both power electronics technology and microelectronics technology, it has dual characteristics of industrial equipment and microelectronic devices. Various faults may occur to inverter due to changes the environment, such as temperature, humidity, smoke, etc, as well as the aging of the internal components. Therefore, in order to obtain long-term normal operation of the inverter, it is necessary to perform routine checks and regular maintenance in storage and operation (at least once of every six months).



### 10.2 Routine maintenance

In order to prevent the inverter failures and to ensure normal operation and prolong the service life, it is necessary to perform routine maintenance for the inverter. The routine maintenance contents is shown as follows:

| Check items               | Check contents                                                        | Criteria                                                                                                                                                                                                                         |  |
|---------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Running<br>environment    | 1.Temperature, humidity<br>2.Dust, gases                              | <ul> <li>1.When temperature is over 40 °C, stop the machine or low the ambient temperature.<br/>Humidity should be less than 95% and no frost.</li> <li>2.There should be no smell, no flammable and explosive gases.</li> </ul> |  |
| Cooling system            | 1.Installation environment<br>2.Fans in inverter main body            | <ol> <li>Good ventilation in the installation<br/>environment, and no block in the air duct.</li> <li>Fans in inverter main body run normally<br/>without abnormal noise.</li> </ol>                                             |  |
| Inverter main<br>body     | 1.Vibration, over-temperature<br>2.Noise<br>3.Conductor and terminals | <ol> <li>The vibration is steady, the air duct<br/>temperature is normal.</li> <li>There is no abnormal noise and no smell.</li> <li>The tightening screws are firmly fixed.</li> </ol>                                          |  |
| Motor                     | 1.Vibration, over-temperature<br>2.Noise                              | <ol> <li>Steady running and normal temperature.</li> <li>No abnormal and uneven noise.</li> </ol>                                                                                                                                |  |
| Input/output<br>paramters | 1.Input voltage<br>2.Output current                                   | <ol> <li>The input voltage is within a standard range.</li> <li>The output current is lower than the rated values.</li> </ol>                                                                                                    |  |

#### **10.3 Periodic maintenance**

GUIDE

To prevent failure of the inverter and to ensure its high performance and stable operation for a long time, the user must periodically (within six months) inspect the inverter. The inspection items are as follows:

| Inspection items          | Inspection contents                                                                           | Measurements                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| External terminal screws  | Whether the screws are loose.                                                                 | Tight the screws.                                              |
| Power<br>components       | Dust and dirts                                                                                | Use dry compressed air to clean the dust and dirts thoroughly. |
| radiator                  | Dust and dirts                                                                                | Use dry compressed air to clean the dust and dirts thoroughly. |
| Electrolytic<br>capacitor | Whether there is color change or there is peculiar smell.                                     | Replace the electrolytic capacitor.                            |
| Fan                       | Abnormal noise and vibration.<br>Whether the accumulative using<br>time is over 20,000 hours. | <ol> <li>Clean the fan.</li> <li>Change the fan.</li> </ol>    |
| PCB board                 | Dust and dirts                                                                                | Use dry compressed air to clean the dust and dirts thoroughly. |

#### 10.4 Displacement of wearing elements

In order to guarantee long-time, safe, and trouble-free operation of the inverter, consumable components such as inverter fan and electrolytic capacitor should be regularly replaced. Consumable parts replacement time is as follows:

Fan: It must be replaced after using over 20,000 hours.

Electrolytic capacitors: It must be replaced after using over 30,000 to 40,000 hours.

#### 10.5 Storage and guarantee

Special attention should be paid as follows during inverter's temporary or long-term storage:

- (1) Avoid storing the inverter in places with high temperature, moisture or vibration and metal dusts. Ensure good ventilation.
- (2) If the inverter will be not used for a long time, it should be energize once of every six months to restore electrical characteristics of the filter capacitor and checked for normal functions. During inverter energization, the voltage should be gradually increased by an autotransformer, and the energization time is not less than 5 hours.

GUIDE

During the guarantee period, maintenance fee should be borne by the users to repair the problems caused by the following reasons:

- (1) Failures caused by operations that disobey the operating manual or exceed using standards in the specification.
- (2) Faults caused by self-repair and modification without permission.
- (3) Faults caused by improper storage.
- (4) Faults caused by abnormal use of the inverter.
- (5) Faults caused by machine damages due to fire, salt corrosion, gas corrosion, earthquakes, storms, floods, lightning, abnormal voltage or other reasons caused by force majeure.

Our company offers a lifetime paid service even if the guarantee period expires.



# GUIDE InverterHF650 Series Technical Manual

Version: 1.00

Precautions

- 1. Make sure to read this manual before using the inverter products.
- 2. Please ask for professional commissioning and wiring for safety.
- 3. The contents of this manual is subject to change without notice.

Wuhan Guide Electric Drive Technology Co., Ltd.
Address: No.6, WUT (Wuhan University of Technology) Science and Technology Park, Wuhan East Lake High-tech Development Zone, Wuhan, Hubei, P.R. China
Postcode: 430223
TEL: 86-27-87927230
FAX: 86-27-87927299
E-mail: yxzx@guide-edrive.com
Website: www.guide-edrive.com
After-sales service line: 400-0077-570

Wuhan Guide Electric Drive Technology Co., Ltd.